A Dual Axis Solar Tracker Via Arduino

¹Vaishnavi Dhok,²Tuba Khan, ³Shreshtha Bindani ,⁴Tanushree Tidke ⁵Dipak Khobragade, ⁶Girish Bahekar .

 ¹ Head of Department, Department of Electrical Engineering, JD college of Engineering and Management, Nagpur.
² Assistant Professor, Department of Electrical Engineering, JD college of Engineering and Management, Nagpur.
^{3,4,5,6} Research Scholar, Department of Electrical Engineering, JD college of Engineering and Management, Nagpur.

_____***____

Abstract - This design further explains the construction and setup of Binary Axis Solar Tracker system using Arduino microcontroller itself. Basically, the main goal is to make solar panels work the same way by keeping them pointed directly at the sun all day long. Unlike regular solar panels that get sunlight at certain times only, this system moves the panel in horizontal and vertical angles itself to get best sunlight from morning to night. This further helps in getting maximum sunlight throughout the day. Basically, this system uses LDRs to detect the same position where the sun is located. Also, the Arduino takes the information from the light sensors and we are seeing it controls two servo motors only, which move the solar panel to face the sun. This automatic adjustment surely helps the solar panel produce more energy than a fixed panel. Moreover, it increases the overall efficiency of the system. The design is actually affordable and efficient, and it can definitely be expanded for larger setups. It shows that simple microcontrollers with sensors can further improve renewable energy systems itself.

Keyword:- Dual-axis solar tracking, servo motor, light-dependent resistor (LDR), photovoltaic efficiency, renewable energy, automatic sun tracking, microcontroller-based control, solar energy optimization.

1. INTRODUCTION

The growing global demand for clean and sustainable energy has driven significant advancements in solar photovoltaic (PV) technology. Solar energy, being abundant and renewable, offers a viable alternative to fossil fuels. However, the efficiency of conventional PV systems is limited by their fixed orientation, which prevents optimal alignment with the sun's position throughout the day.

This misalignment results in substantial energy losses, with studies reporting efficiency reductions of up to 40% in stationary systems. Solar tracking systems provide an effective solution to this challenge by continuously adjusting the orientation of PV panels to maximize solar irradiance capture.

Among various configurations, dual-axis tracking systems have demonstrated superior performance, enabling both horizontal and vertical adjustments to follow the sun's trajectory more precisely. The integration of servo motors with light-dependent resistors (LDRs) and microcontroller-based control enhances the system's ability to respond to real-time changes in sunlight intensity.

This review explores the design principles, technological advancements, and performance benefits of servo motor—based dual-axis solar tracking systems. By synthesizing findings from existing research and practical implementations, it aims to highlight the potential of automated solar tracking in improving energy yield, reducing inefficiencies, and accelerating the adoption of renewable energy technologies.

2. LITERATURE SURVEY

- Several Research studies have focused on dual axis solar light tracking system. Nema, et al. This work implements a single-axis tracker using LDRs and servo actuation controlled by a microcontroller. Experimental results reported energy gains of around ~30% compared to fixed panels. The paper emphasizes simplicity and low cost, but notes limited performance under diffuse/cloudy conditions [1].
- Harish, et al. Thakur and colleagues present a dual-axis design that adjusts azimuth and elevation using servos driven by a microcontroller. Their tests show energy improvements of ~40% over stationary installations. The study demonstrates that dual-axis tracking provides superior alignment throughout the day but flags higher mechanical complexity and increased component cost as trade-offs [2].

- K. R. Rajesh et al. This paper reports that a well-designed dual-axis servo-controlled tracker can boost energy production by 40–50%, especially in locations with high direct normal irradiance (DNI). The authors discuss control strategies to reduce hunting and oscillation, and recommend smoothing algorithms or hysteresis thresholds for the LDR readings to improve stability [3]
- Sahin et al. Sahin & Noyan focus on real-time control implementation, comparing sensor-based (LDR) tracking vs. astronomical algorithms. They show that combining astronomical calculations with periodic sensor feedback yields both accuracy and robustness under varying weather, reducing false movements triggered by transient shadows [4].
- Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. explains the underlying physics of photovoltaic conversion, system design principles, and engineering considerations for PV installations. It provides detailed models for solar irradiance, module performance, and loss mechanisms. In the context of solar tracking, the book underlines the importance of maintaining optimal incident angles to maximize conversion efficiency, supporting the theoretical basis for implementing dual-axis systems [5].
- Solar Energy Technologies and Systems: A Guide for Engineers and Researchers. Ahmed and Mustafa present a broad overview of solar energy technologies, including fixed and tracking PV configurations, system integration, and performance evaluation methods. The book discusses both passive and active tracking mechanisms, economic factors, and site-specific design optimizations. Their analysis highlights how active dual-axis tracking offers the highest annual yield potential, albeit with higher initial costs and maintenance needs a finding consistent with recent experimental studies [6].
- Arduino-Based Dual Axis Tracker, Several project reports and patent-style designs demonstrate practical, low-cost dual-axis trackers using off-the-shelf servos (e.g., MG996R), multiple LDRs, and simple PID-like adjustments. These implementations are valuable for prototyping and small-scale demonstration but often lack long-term field testing and standardized energy-yield comparisons across climate zones [7].

Synthesis of Findings:

Performance & Efficiency

- Increased Energy Yield: Dual axis trackers can increase solar energy capture by 30–45% compared to fixed systems, depending on location and solar irradiance.
- Full Sun Tracking: They follow the sun's path in both azimuth (east-west) and altitude (up-down), maintaining an optimal angle throughout the day and year.
- Especially beneficial in regions with high solar variability, such as cloudy or partially shaded

A .Challenges and Limitations:-

Dual axis solar trackers, while highly efficient in maximizing solar energy capture, come with a number of challenges and limitations that can impact their feasibility and long-term performance. One of the primary concerns is their high initial cost, as the system involves complex mechanical components, motors, and control systems that are significantly more expensive than fixed or singleaxis alternatives. This complexity also translates to increased maintenance requirements, since the moving parts are subject to wear and tear, requiring regular servicing to ensure reliability. Structural challenges are also significant; dual axis trackers are more vulnerable to wind loads and harsh weather conditions, necessitating stronger and more expensive support structures. Additionally, these systems require more land space to avoid selfshading due to their greater range of movement, which can be a limitation in land-constrained installations. Energy consumption by the motors, though generally small compared to the output gain, is still a factor—particularly in off-grid systems where every watt counts. Lastly, operational reliability can be affected by sensor inaccuracies, dust accumulation on optics, and potential software or hardware failures, especially in remote or harsh environments. These challenges must be carefully weighed against the performance benefits when considering dual axis trackers for a specific application.

3. Interpretation:-

A dual axis solar tracker is an advanced solar tracking system designed to follow the sun's movement across the sky in two planes—horizontal (azimuth) and vertical (elevation). This allows the solar panels to remain perpendicular to the sun's rays throughout the day and year, thereby maximizing solar energy absorption. Unlike fixed or single-axis systems that can only adjust in one direction or remain stationary, dual axis trackers provide precise alignment with the sun's position, leading to significantly higher energy yields—particularly in locations with high solar path variability. Technically, the system uses a combination of motors, actuators, sensors (like LDRs), or astronomical algorithms to track the sun's real-time position or predict its path. The movement in two axes makes it more complex but also more efficient, especially in utility-scale or high-performance solar projects. While this type of system increases energy production by up to 45% compared to fixed systems, it also brings engineering, economic, and maintenance challenges due to its mechanical complexity and sensitivity to Technologically, it combines sensors, actuators, and control algorithms—sometimes integrated with advanced computational methods like astronomical calculations or artificial intelligence—to achieve precise and dynamic alignment. This system's interpretation also involves understanding the trade-offs it embodies: increased energy yield comes at the cost of added mechanical complexity, higher installation expenses, and greater maintenance demands

4. Findings:-

Research and practical applications of dual axis solar trackers have revealed several key findings related to their performance, efficiency, and feasibility. One of the most significant observations is their ability to substantially increase solar energy capture—typically ranging between 30% to 45% more electricity generation compared to fixed-tilt systems. This improvement stems from the tracker's capability to follow the sun's movement across both horizontal and vertical planes, allowing solar panels to maintain an optimal orientation throughout the day and across seasons. Studies also show that dual axis tracking systems are particularly effective in regions with high solar path variability or near the equator, where the sun's elevation angle changes significantly throughout the year. In such locations, the dynamic positioning greatly enhances irradiance collection, especially during early morning and late afternoon hours when fixed panels are less effective. However, findings also highlight several challenges. The increased mechanical complexity introduces higher installation and maintenance costs compared to single-axis or stationary systems. Furthermore, the systems are more susceptible to environmental factors like strong winds, which can cause structural stress or require shutdowns for safety, reducing effective operational time. On the technological side, recent studies indicate a shift from simple sensor-based tracking to more sophisticated control systems utilizing GPS-based algorithms and real-time solar data. These smart systems not only improve tracking accuracy but also reduce energy consumption by optimizing motor movement. In summary, while dual axis solar trackers deliver clear advantages in energy yield and solar utilization, their economic and mechanical challenges must be carefully evaluated against site conditions, project scale, and long-term return on investment.

5. Future Enhancement:-

The future of dual axis solar trackers lies in improving their efficiency, reliability, and cost-effectiveness through advanced technologies and smarter integration. One promising direction is the incorporation of artificial intelligence (AI) and machine learning algorithms to optimize sun-tracking accuracy and predict environmental conditions, allowing the system to make real-time adjustments that enhance performance and reduce energy loss. Additionally, the development of lightweight, corrosion-resistant materials and modular tracker designs could significantly lower manufacturing and maintenance costs while improving durability in harsh environments. Researchers are also exploring hybrid energy systems where dual axis trackers are coupled with battery storage and smart grid interfaces, enabling energy smoothing, peak shaving, and improved grid interaction. Another important enhancement involves the use of low-power actuators and solar-powered control units, which would reduce the system's internal energy consumption and improve overall energy efficiency. Furthermore, advancements in remote monitoring and predictive maintenance using IoT and sensor networks are expected to improve uptime and reduce human

intervention. Collectively, these innovations aim to make dual axis trackers more scalable, resilient, and economically viable for a wider range of applications, including utility-scale solar farms, off-grid systems, and future smart energy infrastructures..

One of the most promising advancements is the integration of AI and machine learning algorithms for sun tracking and system optimization. These intelligent systems can learn from historical data, weather patterns, and real-time irradiance measurements to predict solar positions more accurately and adjust tracking behavior dynamically. Instead of following a fixed astronomical algorithm or relying solely on sensors, AI-driven systems can optimize panel angles in response to changing environmental conditions, partial shading, or system performance, leading to higher overall efficiency.

Future dual axis trackers are expected to become part of intelligent energy systems by integrating with smart grids and on-site energy storage. This allows the solar system to not only produce more energy but also store it efficiently for use during peak demand or low-sunlight periods. When connected to a smart grid, trackers can even adjust their behavior based on real-time grid demands, contributing to a more stable and responsive energy network.

6. Conclusion:-

Dual axis solar trackers have emerged as a powerful technology to optimize solar energy harvesting by dynamically adjusting the orientation of solar panels along two axes—azimuth and elevation. This continuous alignment with the sun's position throughout the day and seasons allows for a substantial increase in energy output, often exceeding 30-45% compared to fixed solar panel installations. Such performance gains make dual axis tracking systems particularly beneficial in regions with significant solar angle variability, including equatorial and temperate zones. Despite their clear advantages, dual axis trackers face several challenges that impact their widespread adoption. The higher capital expenditure and increased complexity in mechanical design lead to elevated installation and maintenance costs. Moreover, the moving components introduce additional points of potential failure and necessitate regular upkeep, especially in harsh weather conditions. Land use efficiency can also be affected due to spacing requirements to avoid shading during movement None the less, advancements in technology are steadily mitigating these drawbacks. The integration of smart control systems, powered by artificial intelligence and precise solar position algorithms, is improving tracking accuracy and reducing energy consumption. The use of innovative, lightweight, and corrosion-resistant materials enhances structural resilience and lowers maintenance. PAGE NO. 192

needs. Furthermore, coupling dual axis trackers with energy storage solutions and smart grids enhances their operational flexibility, supporting grid stability and energy management. Looking forward, dual axis solar trackers are poised to become more affordable, efficient, and adaptable through ongoing research and development. Their ability to maximize solar capture while aligning with the evolving demands of modern energy systems makes them a critical component in the transition to sustainable and renewable energy infrastructure. As these technologies mature, they hold promise for broader adoption across utility-scale solar farms and even smaller-scale, distributed generation systems, helping to meet global energy needs with greater efficiency and environmental responsibility.

7. REFERENCES

- [1] S. P. Nema, S. P. Soni, and P. K. Shukla, "Solar Tracking System Based on Light Sensor with Servo Control," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 3, no. 8, pp. 11563–11569, Aug. 2014.
- [2] H. N. Thakur, S. P. Thakur, and D. R. Thakur, "Design and Development of Solar Tracking System with Dual Axis and Servo Motor Control," International Journal of Computer Applications, vol. 145, no. 4, pp. 26–29, Jul. 2016.
- 3. [3] K. R. Rajesh, A. K. V. Reddy, and M. L. S. B. Rao, "Energy Efficiency Improvement of Solar Power System using a Servo Motor Based Tracking System," Journal of Renewable and Sustainable Energy, vol. 12, no. 5, pp. 1–10, Sept. 2020.
- 4. [4] A. Sahin and M. Noyan, "A New Approach for Solar Tracking Systems: Real-Time Implementation of Dual-Axis Solar Tracker Using Servo Motors," Energy Conversion and Management, vol. 76, pp. 1044–1050, Dec. 2013.
- 5. [5] P. Krause and A. Wanner, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. London, U.K.: Imperial College Press, 2016.
- 6. [6] S. Ahmed and M. Mustafa, Solar Energy Technologies and Systems: A Guide for Engineers and Researchers. Amsterdam, Netherlands: Elsevier, 2019.
- 7. [7] "A New Design Arduino-Based Dual Axis Solar Tracking System," ResearchGate, 2020. [Online].J. Engelhardt, J. M. Zepter, T. Gabderakhmanova, and M. Marinelli, "Energy management of a multi- battery system for renewable-based high power EV charging," *arXiv*, Dec. 2021.