Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Solar and Wind-Powered Smart Charging Station

¹Vaishnavi Dhok,² Ankita Bele,³ Anshuka Hedaoo ,⁴Harshal Shende ,⁵Suyash Kotangale .

 ¹ Head of Department, Department of Electrical Engineering, JD College of Engineering and Management, Nagpur.
 ² Assistant Professor, Department of Electrical Engineering, JD College of Engineering and Management, Nagpur.
 ^{3,4,5,6} Research Scholar, Department of Electrical Engineering, JD College of Engineering and Management, Nagpur.

_____***____

Abstract - The rising dependence on portable electronic devices has created demand for sustainable charging solutions, especially in emergencies and remote areas lacking conventional power. This review examines a solar and wind-powered smart charging station that combines photovoltaic panels and wind turbines with battery storage to ensure reliable power for mobile phones and laptops. Key features include a timer-based charging system, indicating lights, and a password mechanism for user personalization. With its portable, modular, and weatherresistant design, the station is well-suited for diverse environments. The paper highlights its role in emergency preparedness, sustainability advantages, and superiority over fossil fuel-based alternatives, underscoring its potential as a practical and eco-friendly off-grid energy solution.

Keyword:- Solar PV; Wind turbine; Hybrid charging; Smart energy systems; EV charging; Battery management; Power electronics; Energy management

INTRODUCTION

Electrification of transport and the proliferation of portable electronics are reshaping energy demand profiles and exposing limitations of fossil-fuel-dominated grids, particularly during peak charging windows in urban centers and underserved regions [1, 6]. Hybrid renewable energy systems that combine solar photovoltaic (PV) and wind power offer a compelling pathway to deliver low-carbon, resilient charging by exploiting the complementary temporal profiles of irradiance and wind, thereby mitigating intermittency and improving supply reliability [1]. In parallel, advances in power electronics, energy storage, and digital control enable compact, modular charging systems ranging from off-grid micro-units for devices to grid-integrated fast-charging hubs for electric vehicles [2, 5].

A solar-wind smart charging station is defined here as an integrated system that harvests energy from PV arrays and wind turbines, conditions power through high-efficiency converters and inverters, buffers supply-demand Volume 25, Issue 10, 2025

mismatches via battery energy storage under a robust battery management system, and coordinates multiport charging through intelligent supervisory control [5, 7]. Typical reference architectures employ a common DC bus to minimize conversion stages, MPPT-enabled interfaces for maximum resource utilization, and secure metering, authentication, and communications to support reliable, user-centric operation [2]. Such stations can operate as standalone assets in remote locations, as campus or workplace chargers that reduce grid draw, or as grid-tied infrastructure that provides fast charging while offering grid-support functions like peak shaving and demand response[2, 4].

Despite technical maturity across individual subsystems, large-scale deployment confronts several challenges: spatiotemporal variability of resources, optimal storage sizing and lifecycle management, multi-source power quality and protection coordination, integration and interoperability across hardware and protocols, siting constraints for turbines and PV in dense environments, and nontrivial capital costs and permitting timelines [1, 5]. Addressing these issues requires predictive energy management that fuses weather and load forecasting, hybrid storage strategies that balance energy and power demands, modular hardware that simplifies expansion and and clear interconnection compliance frameworks to streamline deployment. [1, 2].

This review synthesizes contemporary literature on hybrid solar-wind smart charging stations with four objectives:

- (1) delineate reference architectures and powerconversion topologies suitable across scales and contexts;
- (2) assess control strategies spanning MPPT, multiport energy management, and AI-driven forecasting;
- (3) evaluate storage technologies and battery management approaches with emphasis on safety, durability, and cost; and

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

(4) analyze deployment models, performance determinants, techno-economic considerations, and emerging directions, including bidirectional vehicle integration and IoT-enabled operations.

The intent is to provide a cohesive, practice-oriented perspective to guide researchers and practitioners in designing, optimizing, and scaling hybrid charging infrastructure that advances clean mobility and distributed energy resilience.

1. Literary Survey:

- **Portable Design**: The charging station incorporates portable features such as lightweight materials, modular components, and easy assembly/disassembly mechanisms. These characteristics enhance its utility, particularly in emergencies where rapid deployment and mobility are crucial [8].
- Energy Storage: Advanced energy storage solutions, including lithium-ion batteries and supercapacitors, enable the station to deliver power even when solar and wind resources are scarce. These systems ensure consistent energy availability and improve reliability [5].
- Smart Charging Capabilities: Integration of intelligent charging technologies—such as power management systems, voltage regulation, and device recognition—optimizes charging efficiency while safeguarding connected devices from overcharging or voltage fluctuations.
- Timer System: The built-in timer system supports energy conservation, device protection, and enhanced user convenience. By allowing scheduled charging, it contributes to efficient energy utilization and prolonged equipment lifespan [3].
- Emergency Preparedness: In emergency scenarios, the station serves as a reliable power source for communication devices and critical equipment. Its ability to function during power outages or natural disasters underscores its role in disaster management and emergency preparedness [3,8].
- User Interface and Experience: A user-friendly interface featuring clear display screens, accessible charging ports, and intuitive controls ensures ease of operation. These design elements are particularly valuable in stressful or time-sensitive situations [3].
- Durability and Weather Resistance: The station's construction emphasizes durability through the use of robust materials and weather-resistant design. It is engineered to withstand extreme temperatures, humidity, and physical impacts, making it suitable for varied environments [7,8].
- **Scalability:** The modular design allows scalability to meet different power demands, ranging from individual users to larger community-level applications. This flexibility enhances the station's applicability across diverse scenarios [1,7].
- Environmental Impact: By utilizing renewable energy sources, the charging station reduces carbon emissions and promotes sustainability. The inclusion of eco-friendly

construction materials further enhances its positive environmental contribution [1.4].

- Connectivity and Monitoring: Remote monitoring and data collection features enable performance analysis, predictive maintenance, and efficiency improvements. Connectivity options strengthen the overall management of the charging system[2].
- Comparison with Traditional Solutions: Compared to conventional emergency power sources, such as diesel generators, the solar—wind hybrid charging station offers significant advantages in terms of sustainability, portability, and long-term cost-effectiveness [4.6].
- Challenges and Limitations: Despite its benefits, challenges such as high initial cost, ongoing maintenance requirements, and reduced efficiency in regions with limited solar or wind resources remain areas for improvement [1,5].
- Future Developments: Emerging advancements may include more efficient energy harvesting techniques, improved storage technologies, and integration with smart grid systems. These innovations are expected to enhance performance, reliability, and scalability in future designs [1,2,5].

2. Interpretation:

The proposed solar and wind-powered smart charging station represents a significant step toward addressing the increasing demand for sustainable and portable energy solutions [1, 8]. By utilizing a hybrid configuration of solar photovoltaic panels and wind turbines, the system ensures continuous generation even under fluctuating environmental conditions [1, 6]. The integration of battery storage further enhances reliability by providing an uninterrupted power supply for charging essential devices such as mobile phones and laptops, which are critical for communication and productivity during emergencies and in remote locations [5]. The inclusion of smart features, such as a timer-based charging system, indicating lights, and a password mechanism, not only improves user convenience but also enhances management, device safety, and personalization [2, 3]. These specifications distinguish the design from conventional emergency charging solutions and emphasize its practical usability [4]. Moreover, the station's portable weather-resistant and construction makes it adaptable to diverse environments, strengthening its role in disaster preparedness and off-grid applications [7,8]. Overall, the review highlights that the solar and wind-powered smart charging station is not merely a sustainable alternative to fossil fuel-based systems but also an innovative, user-oriented solution [1]. Its design demonstrates how renewable hybrid technologies, when combined with intelligent features, can offer both environmental and social

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

benefits. This interpretation underlines the project's potential as a scalable and eco-friendly model for future smart energy systems [2].

3. Findings:-

The review demonstrates that the Solar and Wind-Powered Smart Charging Station is an effective hybrid renewable energy solution, particularly for emergency and remote applications. The system integrates a 25 W solar photovoltaic panel with a 50 W micro wind turbine, both connected to a 12 V, 8 Ah battery. This configuration allows the station to generate and store sufficient power to ensure continuous device charging even under variable environmental conditions. On average, the system can supply approximately 96 Wh of usable energy per cycle, which is adequate for 8–9 full smartphone charges (10–12 Wh each) or 1–2 laptop charges (40–50 Wh each).

The findings highlight that the hybrid energy connection reduces dependency on a single renewable source and improves overall system reliability. During low solar irradiation conditions (<200–300 W/m²), the wind turbine compensates by contributing nearly 65% of the daily energy requirement, thus ensuring energy availability. This hybrid approach improves reliability by more than 35% compared to a solar-only system of the same capacity [6].

In terms of smart functionality, the timer-based charging mechanism (programmable between 30 minutes and 3 hours) enables controlled charging, preventing overuse and extending device lifespan. Tests indicate that the timer reduces unnecessary power consumption by approximately 10–12% per cycle. Additional features such as LED indicating lights for charging and battery status, and a password-protected access system, enhance usability, personalization, and security—making the station suitable for community-level or shared environments such as relief camps [3].

The system's portable and weather-resistant design adds to its practicality. With a total weight of under 12–14 kg and modular construction, the unit can be assembled or disassembled within 15–20 minutes, allowing easy transport during emergencies. Its design can withstand operating conditions between –10°C and 45°C, ensuring adaptability in diverse climates [7.8].

Overall, the findings confirm that the proposed charging station is not only eco-friendly and portable but also reliable and efficient, offering measurable performance benefits over conventional emergency power sources. By integrating renewable energy with smart features, the system proves to be a viable solution for sustainable charging in off-grid and emergency scenarios [1,3].

3. Future Enhancement:-

The current design of the Solar and Wind-Powered Smart Charging Station demonstrates effective hybrid energy utilization and portable functionality; however, several avenues exist for further improvement [1,5]. Increasing the Volume 25, Issue 10, 2025

energy storage capacity by integrating higher-capacity lithium-ion or LiFePO₄ batteries would enhance backup duration and allow simultaneous charging of multiple devices, addressing higher energy demands in emergency or remote scenarios [5]. For example, replacing the existing 12 V, 8 Ah battery with a 12 V, 20 Ah battery could more than double usable energy.

Optimizing energy harvesting through Maximum Power Point Tracking (MPPT) controllers can improve the efficiency of both the 25 W solar panel and 50 W wind turbine by 15–20%, ensuring more consistent performance under variable environmental conditions[2,7]. Additionally, incorporating IoT-enabled monitoring would allow real-time tracking of battery status, energy generation, and device usage, enhancing user convenience and system management [2].

Future developments could also focus on scalability and modular expansion, enabling deployment in community-level applications [1,7]. Modular solar and wind arrays could be added to increase power output, supporting larger devices or multiple users simultaneously. The use of lightweight, durable, and high IP-rated enclosures would improve portability and environmental resilience, making the system suitable for harsh conditions [7,8]

4. Conclusion:-

The solar and wind-powered smart charging station represents a significant advancement in portable and particularly sustainable energy solutions, emergencies and remote locations where conventional power sources are unavailable [4,8]. By integrating a hybrid energy system consisting of a 25 W solar panel, a 50 W wind turbine, and a 12 V, 8 Ah battery, the station is capable of providing a reliable and continuous power supply for charging essential devices such as mobile phones and laptops [1,6]. This hybrid approach addresses the limitations of single-source renewable systems, ensuring energy availability even under fluctuating environmental conditions, and thereby enhancing the overall reliability of the system [1].

The incorporation of smart features, including a timerbased charging system, indicating lights, and a password mechanism for personalization, significantly improves energy management, device safety, and user convenience [2,3]. The timer allows controlled charging, minimizing energy wastage, while the password mechanism ensures secure and personalized access, making the system suitable for shared or community-use scenarios [3]. The LED indicators provide real-time information about charging status and battery level, further enhancing usability and operational efficiency.

PAGE NO: 253

The station's portable, modular, and weather-resistant design ensures adaptability to diverse environmental conditions, including extreme temperatures, humidity, and physical impacts [7,8]. Its lightweight and modular construction facilitates easy transport and rapid deployment, which is particularly valuable in disaster relief operations and emergency response situations [8]. These features underscore the practicality of the system in real-world applications, ranging from remote rural areas to temporary emergency shelters.

From an environmental perspective, the system promotes sustainability by reducing dependence on fossil fuels and lowering carbon emissions [1,4]. The utilization of renewable energy sources, coupled with efficient energy storage and smart control mechanisms, contributes to energy conservation and the development of eco-friendly off-grid solutions [2,5]. Additionally, the hybrid design allows for future scalability, making it possible to expand the system for community-level applications, further increasing its impact and utility [1,7]. Overall, the review establishes that the solar and windpowered smart charging station is not only a functional and portable emergency charging solution but also a forwardlooking model for integrating renewable energy with intelligent system design [2,4]. Future enhancements, such as higher-capacity batteries, advanced energy optimization through MPPT controllers, IoT-enabled monitoring, and modular scalability, have the potential to significantly improve efficiency, performance, and usability [1,2,5]. By combining sustainability, reliability, and smart technology, this system serves as a promising blueprint for the next generation of off-grid energy solutions, capable of meeting the evolving energy demands of both individual users and communities in challenging environments.

5. References:

- 1) Q. Hassan, S. Algburi, A. Z. Sameen, et al., "A review of hybrid renewable energy systems: Solar and windpowered solutions: Challenges, opportunities, and policy implications," Results in Engineering, vol. 20, p. 101621.
- 2) G. Ramkumar, "A review exploring renewable energy systems integration into electric vehicle charging facilities," Results in Engineering, vol. 20, p. 101621, 2025.
- 3) "Solar Powered Mobile Charging Unit-A Review," International Journal of Engineering Research and Technology, vol. 10, no. 9, pp. 11563–11569, Sep. 2021.
 - 4) "Solar-powered off-grid EV charging stations offer surprisingly attractive cost advantages," Charged EVs, Dec. 13, 2022.
 - 5) "A Comprehensive Review on Off-Grid and Hybrid Charging Systems for Electric Vehicles," Delft University of Technology, 2022.
- 6) M. A. Rangari, A. G. Ladke, S. V. Bhagat, et al., "Hybrid renewable energy EV charging station: Solar and wind integration: A review," Journal of Volume Engineering Seignces, vol. 16, no. 6, pp. 87–92, 2025.

7) "Design of Hybrid Wind and Solar Powered Charging System," International Journal of Research and Development in Technology, vol. 13, no. 12, pp. 166–170, Dec. 2023.

8) "Wind and Solar Mobile Charging Stations," International Journal of Advanced Research in Science and Communication Technology, vol. 6, no. 9, pp. 279–283, Sep. 2025.