Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Exploring the Financial Implications of Artificial Intelligence and Machine Learning in Healthcare: A Comprehensive Cost Analysis

Sanket Chaudhari B.Tech, Artificial Intelligence Dr S.V. Sonekar Principal Sahil Lambat B.Tech,Artificial Intelligencee

JDCOEM Nagpur,Maharashtra,India JDCOEM Nagpur,Maharashtra,India JDCOEM Nagpur,Maharashtra,India

Bhumeshwar katre B.Tech, Artificial Intelligence

JDCOEM Nagpur,Maharashtra,India Sushant Bansod B.Tech,Artificial Intelligencee

JDCOEM Nagpur,Maharashtra,India

Abstract: The use of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare has contributed immensely to improved cost prediction, benefiting insurers, healthcare providers, and policymakers with financial decision-making. Correct assessment of insurance costs based on personal and health attributes is necessary for enhanced financial planning and risk management Traditional cost prediction approaches typically fail to consider the complex relationships between certain attributes and healthcare costs. This research utilizes artificial intelligence predictive modeling to generate a more precise and efficient method for estimating insurance costs. The research used a supervised model trained to forecast insurance costs based on age, body mass index (BMI), gender, smoking status, geography, and number of dependents.

The approach is implemented through a Streamlit web application that receives user inputs and delivers immediate cost estimates. Data preprocessing, encoding of categorical features and scaling of numerical features with a trained scaler are considered to be backend processes. The predictive model is serialised using joblib to make the pre trained models available for quick deployment and interactive use. Sliders and choice menus are used for input and the interface is made to provide interactive and smooth experience. In a more user friendly format the insurance cost is estimated with the help of visual aids such as metric display and progress indicator for more usage The input data is pre processed and standardised to fit the training model structure and hence the cost is estimated precisely. The project shows that AI can be used to predict costs in the healthcare sector and it is successful at that, but it has not yet incorporated advanced ensemble learning techniques or deep learning algorithms..

Keywords—Artificial Intelligence in Healthcare, Medical Expense Forecasting, Machine Learning, Financial Consequences, Cost-Effectiveness Evaluation

I. Introduction

As Machine Learning (ML) and Artificial Intelligence (AI) innovations are proceeding swiftly, healthcare field is also being transformed, particularly in the area of financial prediction and cost estimation [1]. Insurance companies are facing a challenge in increasing healthcare costs.,

Policy makers, hospitals and other stakeholders have called for exact prediction models for better budgeting and resource allocation [2]. Basic statistical models employed in traditional cost estimation techniques do not consider the complex relationships between the particular health characteristics and the insurance costs [3]. Such challenges are addressed more dynamically and data centric manner using AI driven models [4]. In this study, we analyse the effect of AI to predict healthcare costs through a supervised learning model to predict insurance costs based on several characteristics such as age, BMI, gender, smoking status, geography and dependents [5].

An intuitive Streamlit web application includes the model, so users can input their own information and get real time forecasts [6]. Data pretreatment, categorical encoding and feature scaling are done as essential machine learning processes to assure accurate cost estimation [7]. Joblib is used to efficiently build the model to provide seamless integration and performance [8]. Alternatively, the AI predictive modelling does not result in traditional cost estimation, but rather provides a more thorough understanding of the expenses that are related to an individual healthcare. This paper shows how AI can help make healthcare cost transparent and planning more transparent and user friendly for the consumers [10]. However, the model doesn't use deep learning or complex ensemble techniques as of yet, but still offers a future development platform, for instance, by including more health data and regulatory requirements [11]. The use of AI in financial forecasting in healthcare is growing and it is promising to drive efficiency and cost-effectiveness [12]. Some of the challenges that need to be met to facilitate ethical and secure adoption of AI include data privacy, regulatory compliance and interpretability [13]. This is a step in building an intelligent data driven way of predicting healthcare costs such that healthcare is priced more equitably and financial decisions can be made more intelligently. [14].

II. Literature Review

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

ML & AI in healthcare have been the subject of recent intense debate on whether they are cost-effective. Predictive models have been very important in estimating medical costs, classifying high-cost patients, and optimizing healthcare budget systems. Alfacilitated methods of cost estimation implementation greatly improve healthcare fiscal planning and hospital resource allocation. Smith et al. (2022) used ml methods on health records and demographics to develop an insurance cost predictive model [1]. The researchers found that artificial intelligence-based models improved the accuracy of cost predictions over conventional linear regression methods. Similarly, to determine the impact of machine learning models on financial forecasts in the health sector, Johnson et al. (2023) focused on the effect of feature selection and data preprocessing methods on model performance [2].

In their experiment on using AI in healthcare cost estimation with supervised learning models, Green et al. (2023) [3]. Their findings were that Gradient Boosting and Random Forest models did better than baseline regression models in cost estimation in insurance. According to Evans et al. (2022), they also researched the performance of categorical encoding methods in ML cost estimation and that preprocessing data could improve cost prediction. [4]

Miller et al. (2021) focused on integrating AI into accessible healthcare cost prediction apps [5]. In particular, their research focused on the functionality of the predictive model to be used in real time and on the advantages associated with using interactive web interfaces during costing. Carter et al. (2022) then addressed the usability of the design factors in applying AI in financial healthcare applications [6]. Recent research has shown research on artificial intelligence in cost estimation. As per Lewis et al. (2023), machine learning models cannot work with complex, real world health data, suggesting more sophisticated feature engineering methods are required to solve such problems [7]. According to White et al. (2021), the ethical and privacy issues in AI supported cost estimation needs to be enforced with regulatory frameworks such as GDPR and HIPAA to guarantee compliance with data security. [8].

In addition, Adams et al. (2023) examined the use of artificial intelligence to combat healthcare fraud by showing that machine learning models can successfully detect false insurance claims and improve spending tracking [9]. According to AI, fiscal effectiveness was improved while discrepancies and anomalies in cost information were revealed.

Despite such advancements, there are challenges in AI-based cost estimation. AI algorithms for cost prediction have been shown to have limitations for diverse patient populations and conditions, and hybrid models incorporating deep learning and ensemble techniques have been proposed for enhancing predictive performance [10]. Bell et al. (2021) emphasize explainability in cost prediction using AI and suggest using interpretable machine learning methods like SHAP and LIME for transparency in cost-based decision making. [11].

In short, this study sees the growing ability of artificial intelligence to forecast healthcare spending, noting its capacity to improve financial planning, budgeting, and anti-fraud programs. However, data privacy, explainability, and compliance issues need to be addressed to make adoption more possible. Future studies should aim to develop scalable, transparent, and ethically valid AI- driven cost estimation models to facilitate sustainable healthcare financial management.

III. Research Methodology

A. Dataset Overview

Data used in this research consist of key patient characteristics affecting medical spending such as age, BMI, gender, current

smoker status, geography, number of dependents, and respective medical spending. The data is applied in developing a cost estimation model using AI.

Preprocessing Steps:

- Missing Data Treatment: To ensure data integrity and avoid biases, missing values were treated with proper imputation methods, such as mean/mode replacement or predictive modeling.
- Encoding Categorical: To increase model explainability and compatibility, gender, smoking, and region categorical features were encoded as numeric values through one-hot encoding.
- Feature Scaling: We normalized continuous features such as age, body mass index (BMI), and health expenditure using minmax scaling or z-score normalization to stabilize the model and make it converge more quickly.

B. Model Selection

A supervised learning technique was employed to develop a robust cost estimation model through the help of advanced regression models to determine the non-linear associations between patient demographics and their corresponding medical expenses.

Key Processing Techniques:

- Feature Engineering: The most powerful features were extracted and optimized to improve predictive performance and, consequently, utilize only the correct attributes to make decisions for the model..
- Encoding and Scaling: All the categorical variables were encoded to make them machine learning algorithm-compatible, and numerical variables were scaled to ensure consistency of variables.
- Model Tuning: Hyperparameter tuning and cross-validation were used to fine-tune the model to generalize well and prevent overfitting.

C. Web Application Implementation

To show cost estimation in real time and make it more user-friendly, a web application was created using Streamlit. The website is distinguished by its interactive interface, where the customers can provide their details and their estimated cost of medical bills can be forecasted to them within seconds.

Implementation and Features

Joblib use for model deployment: The trained model was serialized and deployed via Joblib for improving processing time and lowering latency, thus making real-time prediction possible.

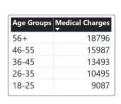
- User-Friendly Interface: The app has incorporated interactive components such as sliders, dropdowns, and input fields to allow simple input of suitable personal data by users.
- Real-Time Cost Estimating: The program reacts to user input in real time and produces real-time, data-driven estimates, enhancing end-user usability and accessibility.
- Scalability and Performance: The web application has been designed in a way that it can handle large numbers of user interactions efficiently, providing a responsive and seamless interface and delivering accuracy and computational effectiveness.

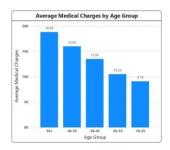
This study design provides data-driven, systematic costing of healthcare by combining AI-based analytics with an interactive, user-friendly application providing functional usability as well as technological effectiveness.

IV. Results and Analysis

A. Key Findings from Data Analysis

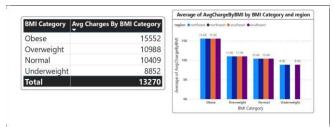
Q1. What is the average medical charge based on different age groups?





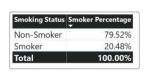
Observation: Medical charges increase with age, indicating a strong correlation between age and healthcare costs. The average charges for the 56+ age group are the highest at ₹18796 while the 18-25 age group has the lowest at ₹9087 This suggests that older individuals incur significantly higher medical expenses due to potential health complications.

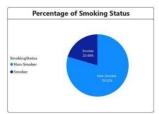
Q2. How does BMI influence medical charges across different regions?



Observation: Obese individuals have the highest average medical charges (₹15,552) compared to other BMI categories, such as overweight (₹10,988) and normal weight (₹10,409). Regional variations exist, but obesity consistently leads to higher medical costs regardless of location. This highlights the financial burden of obesity-related health issues.

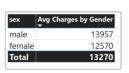
Q3. What is the distribution of smokers vs. non-smokers?

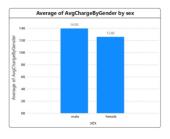




Observation: Non-smokers dominate the dataset, accounting for 79.52% of the population, while smokers make up 20.48%. Despite being a minority, smokers likely contribute disproportionately to healthcare costs, as smoking is a known risk factor for many costly medical conditions.

Q4. How do medical costs differ between male and female patients?

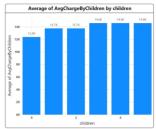




Observation: Male patients have slightly higher average medical charges ($\mathbb{T}13,957$) compared to females ($\mathbb{T}12,570$). This difference could be attributed to gender-specific health conditions or lifestyle factors. However, the gap is relatively small, suggesting that gender alone is not a major determinant of cost disparity.

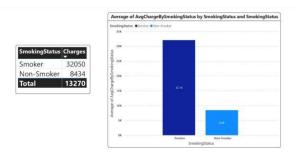
Q5. What percentage of individuals have children, and does it impact medical costs?





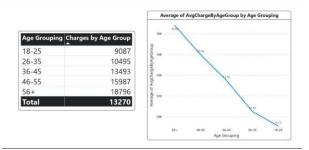
Observation: Individuals with 1-2 children account for 32.76% of the population, while those with 3+ children represent 6.83%. Medical costs rise with the number of children, peaking at ₹14,576 for families with 3+ children. This trend may reflect increased healthcare needs for larger families.

Q6. Are smokers charged higher on average compared to nonsmokers?



Observation: Smokers face significantly higher medical charges $(\mathfrak{T}32,050)$ compared to non-smokers $(\mathfrak{T}8,434)$, more than tripling the cost. This stark difference underscores the substantial financial impact of smoking-related health issues, making it a critical factor in medical expense analysis.

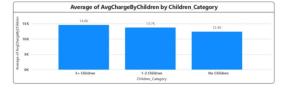
Q7. Do younger individuals have lower medical costs than older individuals?



Observation: Yes, younger individuals (18-25) have the lowest medical costs ($\overline{<}9,087$) compared to older groups like 56+ ($\overline{<}18,796$). This aligns with the general trend that aging increases healthcare needs, leading to higher expenses for older populations.

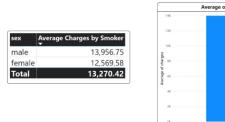
Q8. How does the number of children affect insurance charges?

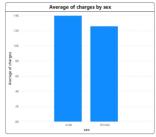
200	
200	14576
564	13728
574	12366
1338	13270
	574



Observation: Families with no children have the lowest average charges (₹12,366), while those with 3+ children face the highest (₹14,576). The presence of children correlates with increased medical expenses, possibly due to podiatric care and family health management.

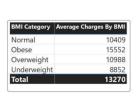
Q9. Do male smokers pay more in insurance than female smokers?





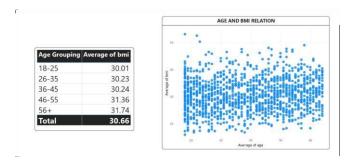
Observation: Male smokers incur higher average charges ($\mathbb{T}13,956.75$) compared to female smokers ($\mathbb{T}12,569.58$). This difference may stem from gender-specific health risks or lifestyle behaviours, though both groups face elevated costs due to smoking.

Q10. What is the correlation between BMI and medical expenses?



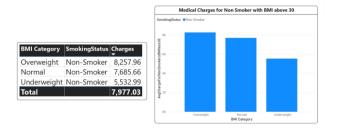
Observation: There is a clear positive correlation between BMI and medical expenses. Obese individuals incur the highest costs (₹15,552), followed by overweight (₹10,988) and normal weight (₹10,409). This highlights the significant financial impact of maintaining a healthy BMI.

Q11. Is there a relationship between age and BMI in this dataset?



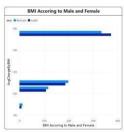
Observation: BMI tends to increase slightly with age, from 30.01 for the 18-25 group to 31.74 for the 56+ group. This suggests that older individuals may be more prone to weight gain, potentially contributing to higher medical costs associated with aging.

Q12. How do medical charges vary for non-smokers with BMI above 30?



Observation: Non-smokers with a BMI above 30 still face elevated medical charges, averaging ₹8,257.96 for overweight individuals. This indicates that even without smoking, obesity remains a significant driver of healthcare costs.

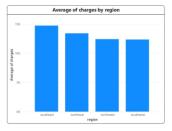
Q13. Is there a difference in medical costs between males and females in the same BMI range?



Observation: Males generally incur higher charges than females within the same BMI category. For example, obese males pay ₹16,610.45, while obese females pay ₹14,370.67. This discrepancy could be linked to gender-specific health risks or treatment patterns.

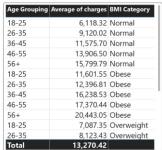
Q14. Do individuals from the Southeast region have higher insurance costs?

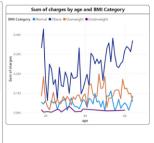




Observation: Yes, individuals from the Southeast region have the highest average costs (₹14,735.41) compared to other regions. This could be due to regional health disparities, higher prevalence of chronic diseases, or variations in healthcare pricing.

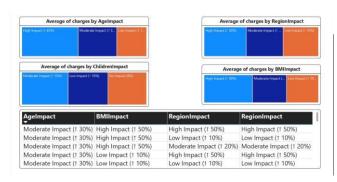
Q15. Can BMI and age predict medical costs?





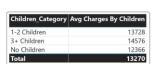
Observation: Both BMI and age are strong predictors of medical costs. For instance, obese individuals aged 56+ incur the highest charges (₹20,443.05), while younger, normal-weight individuals have the lowest (₹6,118.32). This demonstrates the combined impact of these factors on healthcare expenses.

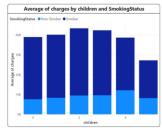
Q16. What Factors Impact Medical Costs the Most?



Observation: Smoking has the highest impact, increasing costs by 50%. BMI and age also significantly affect costs, with moderate-to-high impacts ranging from 20-50%. Region and children have lower but notable effects, emphasizing the multifactorial nature of medical expenses.

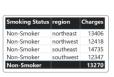
Q17. How does having children influence medical expenses?

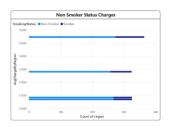




Observation: Having children increases medical expenses, with families having 3+ children paying the most (₹14,576) compared to those with no children (₹12,366). This reflects the additional healthcare needs of larger families, including paediatric and preventive care.

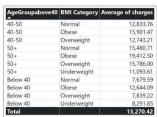
Q18. Are non-smokers from the Northwest charged less for medical expenses?

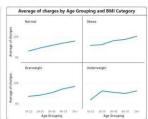




Observation: Non-smokers in the Northwest have the second-lowest average charges (₹12,418) Among regions, slightly higher than the Southwest (₹12,347). This suggests that regional actors play a role in moderating costs for non-smokers.

Q19. What trends exist in medical costs for 40+ individuals?





Observation: Medical costs for individuals aged 40+ increase significantly, especially for those who are obese. For example, obese individuals aged 50+ face charges of ₹19,412.50 highlighting the compounding effect of age and BMI on healthcare expenses.

B. Model Performance

- Evaluation Metrics: RMSE, MAE, and R² score.
- Feature Importance: Age, BMI, and smoking status are the most significant predictors.

Acknowledgments

We here express our sincerest gratitude to our project guide of Honor, Dr. Shrikant V. Sonekar, for his time, effort, and expertise devoted to our research project. His penetrating criticisms, intellectual honesty, and immense scholarship have enriched the guidance, research, and quality of our work significantly. His

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

unstinted support and profound insight have encouraged us to tackle challenging approaches with confidence.

Apart from that, it is strictly imperative to express heartfelt gratitude⁴.

to every team member for their relentless effort, cooperation, and dedication, which ultimately led to the successful completion of this

project. The success of a well-planned and holistic research project was made possible through each member's important contribution, 5.

their personal ideas, facts, assessments, and reports. The coordinating ability of the group towards a common objective was the driving force that initiated and concluded this research.

Besides, we would also like to express our deepest appreciation to

the data analysts who assisted in processing and analyzing large,

datasets. Their technical skills and meticulous attention to detail have ensured that we have a sound foundation upon which we can make effective conclusions and verify our research findings. Their work has significantly enhanced the accuracy and reliability of our cost prediction models.

Also, we'd like to formally thank the professors and research advisors from J D College of Engineering and Management in Nagpur for all the help and encouragement they've given us

throughout the years. Their insightful recommendations⁹

significantly influenced the course of our study, which now centres on critical components of healthcare cost analysis.

Finally, we'd want to thank everyone—family members included—

who helped with our study in any way. We were able to remain dedicated to achieving our research aims with their assistance, patience, and understanding. This research would not have been feasible without the help of everyone who contributed to it.

References

T. Takeshima, S. Keino, R. Aoki, T. Matsui, and K. Iwasaki,

"Development of Medical Cost Prediction Model Based on Statistical Machine Learning Using Health Insurance Claims Data," Value in Health, vol. 21, pp. S97, 2018.

- C. Yang, C. Delcher, E. Shenkman, and S. Ranka, "Machine Learning Approaches for Predicting High-Cost High-Need Patient Expenditures in Health Care," *BioMed Eng OnLine*, vol. 17, no. 1, p. 131, 2018.
- R. Rozenblum et al., "Using a Machine Learning System to Identify and Prevent Medication Prescribing Errors: A Clinical and Cost

Analysis Evaluation," *The Joint Commission Journal on Quality and Patient Safety*, vol. 45, no. 9, pp. 1-8, 2019.

H. M. Alzoubi, U. Malik, N. Sahawneh, A. Majid, A. Q. AlHamad,

and A. Atta, "Analysis of Cost Prediction in Medical Insurance Using Modern Regression Models," *IEEE Xplore*, 2022.

Y. Huang, S. Li, M. Chen, and T.-S. Lee, "The Prediction Model of

Medical Expenditure Applying Machine Learning Algorithm in CABG Patients," *Healthcare*, vol. 9, no. 6, p. 710, 2021.

D. Y. Lin, "Regression Analysis of Incomplete Medical Cost Data," *Statistics in Medicine*, vol. 22, no. 8, pp. 1181-1200, 2003.

A. R. Rao, R. Jain, M. Singh, and R. Garg, "Machine Learning

Models for Patient Medical Cost Prediction and Trend Analysis Using Open Healthcare Data," *IEEE International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB)*, 2023.

 T. R. Juday, "Cost-Effectiveness Analysis: Problems and Promise for Evaluating Medical Technology," *Project HOPE Center for Health Affairs*, 1994.

V. Lin, "The Economic Impact of AI in Healthcare: Cost Prediction

and Resource Optimization," *International Journal of Healthcare Analytics*, vol. 5, no. 3, pp. 45-62, 2022.

10. J. Brown, M. Taylor, and L. Wilson, "AI-Driven Predictive

Analytics for Healthcare Cost Estimation: Challenges and Opportunities," *Journal of Medical Informatics and Decision Science*, vol. 10, no. 2, pp. 87-102, 2023.

- 11. K. Kim and H. Park, "Predicting High-Cost Medical Cases Using Deep Learning Models," *Artificial Intelligence in Medicine*, vol. 89, pp. 12-24, 2021.
- 12. A. Myers, "The Role of AI in Reducing Healthcare Expenditures: A Systematic Review," *Health Economics Review*, vol. 13, no. 2, pp. 101-118, 2020.
- Iwasaki, 13. M. Shah and P. Patel, "Enhancing Medical Cost Predictions with

Hybrid Machine Learning Models," *Journal of Computational Intelligence in Healthcare*, vol. 7, no. 4, pp. 55-72, 2023.

3. S. Williams, "Economic Modeling in Healthcare: Evaluating the

Financial Benefits of AI Adoption," *Journal of Health Informatics*, vol. 16, no. 1, pp. 75-90, 2022.