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Abstract -  

A class of illnesses known as neurological ailments mainly impact the central nervous system (CNS) 

and can impair the blood-brain barrier's (BBB) structural and functional integrity, increase 

permeability and possibly cause damage to the CNS.  The stability and homeostasis of the central 

nervous system depend on the BBB.  It acts as a selective barrier to keep infections and dangerous 

chemicals out of the brain.  Astrocytes, pericytes, microglial cells, tight junctions, and endothelial cells 

are the primary constituents of the blood-brain barrier.  Therapeutic chemicals are transported across 

the blood-brain barrier using nanocarriers to treat neurological illnesses.  These include cutting-edge 

drug delivery technologies that improve therapeutic targeting and lessen adverse effects, including 

liposomes and solid lipid particles (SLPs).  However, getting medications over the BBB is still quite 

difficult because due of its selectiveness. To get around this obstacle, tactics like receptor-mediated 

transport (RMT), carrier-mediated transport (CMT), and passive diffusion are being investigated. The 

several methods for treating neurodegenerative illnesses with drug delivery systems that can penetrate 

the blood-brain barrier are the main topic of this review. 
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1. Introduction  

Multiple sclerosis and other neurological disorders like Alzheimer's and Parkinson's disease have afflicted a 

sizable portion of the world's population in recent decades.  The challenge of administering therapeutic chemicals 

across the central nervous system (CNS) poses a substantial obstacle to the treatment of various disorders [1].  In 

order to get past this, scientists have created a number of methods for breaking through the blood-brain barrier 

(BBB), which is selectively permeable and guards against dangerous substances while controlling the admission 

of necessary molecules [2,3].  Comprising astrocytes, pericytes, endothelial cells, and a basement membrane [5], 

the blood-brain barrier (BBB) is a highly regulated system that restricts the flow of chemicals into the brain [4].  

Notwithstanding this protective role, the barrier poses a significant challenge for medication delivery. Restricting 

the brain's capacity to receive multiple medicines and achieve positive results [6].  In order to overcome this, 

nanotechnology delivery systems have been developed that can pass through the blood-brain barrier and deliver 

their payloads to specific locations in the brain, resulting in improved therapeutic effectiveness and fewer adverse 

effects [7].  Both organic and inorganic materials are used to create these nanocarriers, which are designed to have 

low toxicity, a long circulation time, and good biocompatibility.  Additionally, a number of mechanisms have been 

investigated to enhance drug transport into the brain, including passive diffusion, receptor-mediated transport, 

carrier-mediated transport, and adsorptive-mediated transcytosis.  Because of the way the blood-brain barrier 

(BBB) is structured, targeted drug delivery requires a carefully thought-out strategy [8].  The focus of this review 

is on treatment approaches for treating particular disorders of the brain [9]. Levodopa administration has been 

investigated using a variety of modalities, including inhalation, sublingual routes, transdermal systems, and 

sophisticated gene therapy approaches, especially for the treatment of Parkinson's disease [10].  An examination 

of the mechanisms underlying drug transport as well as the variables affecting their efficacy and constraints in 

crossing the blood-brain barrier are also included in the debate [11].  Additionally, this study aims to highlight 

several therapeutic approaches and provide an overview of the routes, difficulties, and limitations involved in drug 

delivery across the blood-brain barrier. 
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Figure 1: Alzheimer's Disease (AD) - Current Treatments 

 

2. Mechanism of drug delivery across BBB 

Facilitating the supply of vital nutrients, preserving ionic equilibrium, and offering defense against neurotoxins 

and infections are the core functions of the blood-brain barrier (BBB) [12]. The BBB is a key regulatory 

mechanism in the brain because the central nervous system alters the permeability of cerebral capillaries to stop 

certain macromolecules and the permeability of cerebral capillaries to stop certain macromolecules and poisons 

from entering the brain [13]. The brain's architectural structure, which includes the blood-brain barrier (BBB), 

blood-cerebrospinal fluid (CSF) barrier, and blood-spinal cord barrier, has changed over time to show different 

levels of permeability. The blood-brain barrier is the most extensive and important of these systems [14,15]. It is 

made up of layers of astrocytes and pericytes, as well as endothelial cells that are closely linked to brain tissue in 

what is referred to as the Neurovascular Unit (NVU) [16]. The transfer of water and salts from the circulation into 

the extracellular fluid is facilitated by this arrangement [18]. Damage or infection impairs the brain tissue's ability 

to filter salts and water, which raises intracranial pressure and causes edema [17]. The BBB works in these 

situations to stop fluid from leaking in from different body parts, which could lead to health issues. Passive 

diffusion, receptor-mediated transport, efflux pumps, carrier-mediated transport, and adsorptive-mediated 

transport systems are the five ways that chemicals can cross the blood-brain barrier [4,12]. 

 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 7, 2025 PAGE NO: 323



a) Passive diffusion 

Non-ionic diffusion, or the movement of substances without the use of energy (ATP), is what defines it. These 

proteins serve as solute transporters. The cell membrane has a large number of ligand-gated channels that react to 

hormones or neurotransmitters. This process, which is also known as paracellular transport, shows that the drug 

can enter the systemic circulation through gastrointestinal epithelial cells by largely passing through tight 

junctions as a water-soluble substance [67,75]. Osmosis, passive transport, and active transport are some of the 

ways that materials move across biological membranes [24]. Rather than through changes in membrane voltage, 

these channels are activated by the binding of particular molecules. They exhibit selectivity, saturation, and 

competition with similar substrates in their transport kinetics. This includes both persorption and penetration via 

the epithelial cells' tight connections. Notably, more than 90% of medications follow the passive diffusion method 

of absorption. In order to improve solute diffusion across the membrane, several membrane proteins form an 

alternate pathway with the solutes [22]. Diffusion and lipid dissolution, ligand-gated channels, voltage-gated 

channels, facilitated diffusion, pore-forming ionophores, and diffusion-mediated ionophores are among the 

mechanisms of passive transport that have been described. The electrochemical gradient, also known as the 

concentration gradient, is the main force behind this process. In order to balance their distribution, substances 

travel from regions of higher concentration to regions of lower concentration, as determined by osmosis; this 

movement requires no energy, making the process passive [23]. 

b) Transcellular diffusion  

Another name for it is intracellular transport. Substances pass through the gastrointestinal (GI) epithelial barrier 

during this procedure. The mechanism can be divided into three successive phases: the transit through the 

intracellular milieu; the subsequent permeation of the lateral membrane; and the permeation of the GI epithelial 

cell membrane, which functions as a lipoidal barrier. Transcellular transport is essential for maintaining 

physiological balance and for the secretion and absorption of ions, nutrients, and other biomolecules in a variety 

of tissues. There are several ways that the transport process can take place, including transcytosis, active transport, 

assisted diffusion, and passive diffusion. While active transport requires the use of energy to move molecules 

against concentration gradients, passive and facilitated diffusion allow substances to move in line with their 

gradients. Transcytosis is a specialized mode of transport that moves macromolecules, such proteins, between in 

epithelial tissues, such as those in the kidneys, intestines, and blood-brain barrier, where the selective translocation 

of chemicals is crucial, this transport mechanism is especially important. Understanding transcellular transport is 

crucial for developing effective drug delivery methods in the clinical and pharmaceutical fields, especially when 

it comes to oral medications and treatments targeted at the brain or other isolated organs. [21].  

c) Carrier-mediated transcytosis  

Given that it indicates a primary process, it is also known as protein-assisted diffusion.  The interspecies variability 

in the neurovascular transport system, which is characterized by differences in substrate specificity, transporter 

expression profiles, and regulatory mechanisms, is a significant factor that contributes to the low efficacy rates in 

the formulation of neuroaxis and acne pharmacotherapeutics. This makes it more difficult to directly extrapolate 

results from animal models to human subjects.  The carrier, which represents a membrane constituent, can interact 
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with solute molecules for transportation via non-covalent bonding [22,67].  Through immunohistochemistry 

analyses performed on human brain tissue slices and cultured neurovascular lining cells, the expression of 

transport proteins was thoroughly investigated; nevertheless, these studies provide important information, 

depending on the selectivity of each antibody used. Antibody specificity requires careful consideration.  Anti-PGP 

antibodies, for example, may attach to muscle proteins, such as MyHC protein, in a non-specific manner.  

Furthermore, factors including clinical circumstances and tissue fixation techniques may affect the cellular 

distribution of transport proteins as well as the specificity of antibody binding in cadaveric samples [26].  The role 

of the carrier protein at the human cellular interface has been partially revealed by tissue-level immunoanalytical 

and transcriptomic analysis; however, functional evidence is still necessary to fully clarify the distinct roles of the 

corresponding carrier protein in cerebral endothelial barrier transport.  More detailed assessment of protein-

facilitated translocation across the brain vascular interface in humans has been made possible by recent 

developments in positron emission tomography (PET) tracers and visualization techniques. Higher plasma 

concentrations are correlated with an improved pharmacological response in the carrier group. Together, they 

make up the vitamin and intrinsic factor complex. Free vitamins can be released in the lumen by the process that 

happens after membrane transfer, namely the complex's dissociation. Vitamins B1 and B2 are absorbed in the 

intestines, and excess glucose is converted into blood erythrocytes as an example of such transport mechanisms 

[27]. 

d) Adsorptive-mediated transcytosis 

 Adsorptive-mediated transcytosis (AMT) is best suited for the blood-brain barrier (BBB). This procedure makes 

it possible for cationic substances to adhere to endothelial cells' luminal interface, which in turn causes their 

transcytosis and exocytosis at the albuminal interface. This process is supported by the presence of a transcytosis 

pathway as well as the distinct morphological and enzymatic characteristics of BBB endothelial cells. 

Furthermore, the necessary energy for the active transport of substances across the barrier is provided by the 

significant mitochondrial density in the cerebral endothelium cytoplasm. This mechanism includes both blood-

brain barrier penetration and binding to the surface of endothelial cells. Because of their affinity for interacting 

with polycations, cationic compounds improve the penetration dynamics throughout the cerebral vasculature when 

they interact with proteins [19]. The blood-brain barrier is also crossed by cationized particles, which can be 

explained as positively charged proteins attaching to the negatively charged membrane surface and creating 

electrostatic interactions between them. Protamine, histones, and glycocalyx during their passage through the 

blood-brain barrier are notable examples. Pharmacological drugs and therapeutic compounds can be delivered 

across the blood-brain barrier more easily thanks to this transcytosis pathway [20]. The BBB's surface is the target 

of the glycocalyx and its negative charge. The cerebral extracellular space's (ECS) luminal surface exhibits an 

overall negative charge at normal pH. Early ultrastructural studies revealed that heparan sulphate proteoglycans 

and sialylated glycoconjugates, which are essential components of the glycocalyx, significantly contribute to this 

negatively charged barrier. Furthermore, anionic sites have been found on both the abluminal and luminal surfaces 

of the cerebral ECS [19,20]. 
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Figure 2: Histopathological Features of Parkinson's Disease and Alzheimer's Disease 

e) Receptor-mediated transcytosis 

Proteins classified as receptors are identified by their extracellular domains, which are capable of binding specific 

ligands and facilitating their transportation into intracellular spaces. Certain therapeutic drugs strategically use 

endothelial cell receptors in the field of pharmacological administration to increase their efficacy in reaching 

certain target locations. By reducing off-target toxicity, this methodological approach makes it easier for 

pharmacological substances to pass through cellular membranes. An exogenous ligand first binds with its 

corresponding receptor located on the cell surface in the receptor-mediated transcytosis (RMT) paradigm [67,69]. 

The ligand-receptor complex is absorbed into the cellular environment as a result of this contact, which starts the 

endocytosis process, which leads to the creation of an endosome. The endosome is then moved throughout the 

endothelial cell. Its encapsulated cargo is then exocytosis and released into the brain parenchyma. Numerous 

receptors are commonly used for the targeted administration of medicines to the nervous system and have been 

extensively studied for their critical role in RMT. Prominent instances include the glutathione transporter, insulin, 

lipoprotein, transferrin, and diphtheria toxin receptors [50]. For the translocation of macromolecules and 

heterogeneous agents—which can have a diameter of up to 80 nm or a molecular weight of about 80 kDa—across 

the blood-brain barrier, RMT is especially important. These channels make it easier for macromolecules to move 

through the body's many physiological barriers [21]. These mainly consist of transferrin (Tf), insulin (INS), low-

density lipoproteins (LDLs), and insulin-like growth factors 1 and 2 Three separate stages can be distinguished in 

the RMT process: 1) Endocytosis: Certain substances, such proteins, have a tendency to attach to their 
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corresponding cellular surface receptors, which causes a ligand-receptor complex to develop. Numerous 

biochemical and immunological processes are crucially regulated by this process [28]. 2) Intracellular Trafficking: 

Endosomal sorting is another name for this stage. The receptor may return to the cellular surface when the 

previously formed ligand-receptor complex dissociates, but it will also be subject to cytosis and destruction [29]. 

3) Exocytosis: In addition, the complex can separate into several vesicles that pass through the plasma membrane, 

allowing it to subsequently attach to the surface of nearby cells and ultimately cause chemicals to be released into 

the pericellular space [32]. 

f) Efflux pumps 

The homeostasis of the organism is maintained in large part by this system. The blood-brain barrier's (BBB) 

selective permeability is facilitated by the specialized P-glycoprotein (P-gp) transporter. The removal of harmful 

compounds from bacterial cells is one of its primary roles [30]. It also stops different hydrophobic substances 

from entering the brain. P-gp at the BBB is known to affect the systemic availability of substrates to the central 

nervous system (CNS), despite the fact that its exact mechanism is yet unknown. Additionally, the BBB actively 

transports a number of neuromodulators out of the brain. One such example is dehydroepiandrosterone sulphate 

(DHEAS), a norsteroidal that promotes learning, memory improvement, and neuroprotection by interacting with 

GABA and sigma receptors. while simultaneously protecting neurons from harm caused by excitatory amino acids 

[31]. The concentration of substrates in the extracellular fluid of the brain is first determined by this transporter 

system, which then analyses the substrates' capacity to bind to pharmacological receptors. ABCG2 (breast cancer 

resistance protein), ABCB1 (P-glycoprotein), and ABCCs (multidrug resistance-associated proteins, Mrps) are 

some of the key subgroups of the ATP-Binding Cassette (ABC) transporter family. These transporters, which are 

found on the blood-facing side of the barrier, limit the entry of different substrates into the brain in an energy-

dependent manner [30]. 

g) Nanocarriers  

For the delivery of medications to treat disorders of the central nervous system (CNS), nano delivery systems 

present a promising way to get beyond the blood-brain barrier's (BBB) restrictiveness [23]. Notwithstanding their 

potential, the physicochemical characteristics of nanocarriers—such as their optical properties, particle size, 

surface area, and volume ratio—present considerable obstacles in CNS therapy. These nanoparticles are usually 

between 1 and 100 nanometres in size [33]. Because of their many benefits, including enhanced stability, regulated 

drug release, high drug-loading capacity, prolonged bloodstream circulation time, and efficient targeting 

capabilities, nanomaterials are widely used in the development and delivery of therapeutic agents across the blood-

brain barrier. Additionally, nanoparticles are used in regenerative medicine and tissue repair, which may improve 

clinical results and patients' quality of life [34]. The behaviour and distribution of nanomaterials within the body 

are largely determined by their size and hydrophilicity [24, 25]. Nanoparticles hold a lot of promise for treating 

neurological conditions because of their many functional characteristics [35]. As a component of nanocarrier 

systems intended to pass the blood-brain barrier, both organic and inorganic nanoparticles and exhibit lower 

toxicity [36]. Lipid-based systems, cationic liposomes, solid lipid nanoparticles, metallic nanoparticles, polymer-

based nanoparticles, and nano emulsions are among the different kinds of nanocarriers that are engaged [37]. The 
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incorporation of biodegradable and biocompatible amphiphilic components, like fatty acids and phospholipids, in 

their formation further increases their benefits [38, 65]. 

 

Figure 3: Solute Transfer Across Blood-Brain Barrier 

h) Cationic liposomes  

The ability of positively charged liposomes to interact with negatively charged elements on cell surfaces, including 

proteoglycans, and bind anionic nucleic acids to create lipoplex structures was originally shown by Phillip Felgner 

and his group. Nucleic acids are able to enter mammalian cells more easily thanks to this interaction. One type of 

nanoparticle employed in the administration of neuropharmaceuticals is cationic liposomes. These lipid-based 

compounds are physically stable and water-attractive due to their positive charge and hydrophilic head groups and 

hydrophobic tails [39]. In order to give medication for conditions connected to the brain, cationic liposomes—

especially those designed for brain-targeted delivery—are being studied as potentially effective means of 

overcoming the neurovascular barrier [40]. The blood-central nervous system barrier acts as a barrier to prevent 

the passage of certain molecules. introducing big molecules, such enzymes, into brain tissue. One important aspect 

affecting the effectiveness of cationic liposome–nucleotide-based molecules in distribution applications is their 

structural arrangement into certain anisotropic fluid phases [41]. DOTAP (dioleoyl trimethylammonium propane) 

is a common example of a cationic lipid, whereas helper lipids like dioleoyl phosphatidylethanolamine aid in 
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membrane fusion [42]. PEG conjugation, which involves the conjugation of polyethylene glycol chains, has been 

used to increase the therapeutic delivery effectiveness of liposomes by extending their bloodstream residency 

time. [43]. 

i) Solid-lipid nanoparticles  

By preventing therapeutic chemicals from degrading and enabling controlled, site-specific release, solid lipid 

colloidal carriers provide a flexible and focused drug transport mechanism. This method reduces possible side 

effects while also improving treatment efficacy. Fatty acids, waxes, and triglycerides are among the lipid-derived 

components used to create these nanoparticles [45]. Solid lipid nanoparticles (SLNs), which are known for their 

high surface area, steady zeta potential, and nanoscale dimension that usually falls between 50 and 500 nm, are 

considered to be promising carriers for improving drug bioavailability and attaining sustained drug release. Their 

ability to cross the neurovascular barrier is enhanced by their solid internal matrix, which is often coated with 

polyethylene glycol (PEG) and remains stable at physiological temperatures [44,65]. entails the use of 

triglycerides, fatty acids, and waxes; their solid structure allows for a steady and extended release of medication 

while also protecting it from chemical destruction. SLNs can be administered via a range of routes, including 

parenteral and oral delivery methods, due to their low toxicity profiles and biocompatibility [46]. SLNs can 

preferentially accumulate in sites of tissue injury, such as stroke-affected areas, thanks to passive targeting made 

possible by increased vascular permeability and the phenomena of nanoparticle retention. Increased vascular 

permeability and worse lymphatic circulation in these areas are the causes of this buildup, which encourages the 

long-term retention of lipid nanoparticles [46, 47]. By solubilizing poorly water-soluble medications (laden 

compounds), the hydrophobic core of SLNs helps to improve the specificity of targeted administration while 

resolving issues related to drug solubility and release. Many benefits are offered by SLNs, such as improved 

biocompatibility, medication stability, safety, economical manufacturing, scalability, as well as the flexibility to 

accommodate various treatment needs. However, they also have certain drawbacks, including a tendency to gel, 

irregular drug release profiles, difficulties crossing biological barriers, and limited drug encapsulation capacity, 

which could reduce their efficacy in particular therapeutic settings [67,68]. 

j) Metallic nanoparticle  

Particularly when it comes to transporting therapeutic drugs to the brain, metal nanoparticles (MNPs) have shown 

great promise as drug carriers. Their potential to improve drug efficacy by targeted administration, raising the 

therapeutic index and tackling issues like multidrug resistance, has sparked a lot of interest in their use in medicine. 

In addition to medication administration, MNPs are used in a number of biomedical domains, such as nutraceutical 

formulations, the creation of biocompatible materials, and in vivo and in vitro diagnostics [48]. Metal 

nanoparticles are regarded as useful instruments in the treatment of various medication administration, MNPs are 

used in a number of biomedical domains, such as nutraceutical formulations, the creation of biocompatible 

materials, and in vivo and in vitro diagnostics [48]. Metal nanoparticles are regarded as useful instruments in the 

treatment of various disorders, especially those affecting the central nervous system (CNS), due to their special 

size and ability to regulate medication release. However, a significant obstacle to effective medication 

administration is the blood–brain barrier's (BBB) complexity. It has been demonstrated that properly designed 

nanoparticles with specific surface changes have the ability to successfully pass the blood-brain barrier and enter 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 7, 2025 PAGE NO: 329



the central nervous system. Because of their low physiological reactivity, gold, silver, and platinum are often 

utilized metals in drug delivery via nanoparticles [49]. Current clinical research continues to focus on these 

nanoparticles' possible neurotoxic effects and their capacity to cross the blood-brain barrier. The size, shape, 

surface properties, chemical makeup, and aggregation behaviour of nanoparticles all affect their toxicity and BBB 

permeability. Chemical reduction techniques can be used to create metal nanoparticles, which can then 

transcytoses across the blood-brain barrier. Peptide conjugation techniques have been used to boost nanoparticle 

transport across the BBB and increase CNS permeability. Attaching nanoparticles to endothelial cells' transferrin 

receptor is one efficient technique. By functioning as a ligand to carry medications, proteins, genes, and ions to 

particular target areas, transferrin, an iron-binding protein, is essential to receptor-mediated transport. Both 

therapeutic and diagnostic goals are supported by this approach. These conclusions are based on a bibliometric 

analysis of 583 pharmacology, toxicology, and pharmaceutics-related publications that were obtained from the 

Scopus database as of mid-September 2022 [51]. 

k) Nano-emulsion  

Drugs intended to pass the blood–brain barrier (BBB) can be encapsulated in nano emulsions, which are extremely 

versatile delivery vehicles. By solubilizing medicinal compounds inside their dispersed phase, these emulsions 

can improve the bioavailability of drugs. Drugs that are hydrophobic and generally have trouble passing across 

the blood-brain barrier can be transported using oil-in-water (O/W) nano emulsions. However, hydrophilic 

chemicals are better delivered via water-in-oil (W/O) nano emulsions. Nano emulsions offer flexible methods for 

creating BBB-permeable treatments since they can be made by in situ polymerization or by adding pre-formed 

polymers, depending on the particular medication and delivery needs. Nano emulsions, particularly oil-in-water 

varieties, are a specific type of nanoscale drug delivery technology that falls under the larger category of 

nanoparticle delivery systems [52]. They can be manufactured in multiple dose forms, such as liquids, and provide 

a versatile platform for targeting the central nervous system (CNS). This allows them to be delivered via a variety 

of channels, such as intravenous, intranasal, and pulmonary paths. These pathways are particularly pertinent to 

treatments that target the brain. Nano emulsions are especially useful for delivering poorly soluble medications 

across the blood-brain barrier (BBB), improving therapeutic results due to their increased solubilization capacity 

and improved kinetic stability over traditional dispersions. In order to stabilize the emulsion, the formulation 

usually consists of water, appropriate surfactants, and nanocomposite oils, such as fatty acids and triglycerides 

[53]. Furthermore, nano emulsions have shown promise for efficient medication delivery to the brain because of 

their small particle size and capacity for surface modification. By interacting with the barrier's tight junctions, oils 

high in omega-3 fatty acids have also demonstrated potential in increasing BBB permeability [54]. 

l) Polymer-based nanoparticle 

Different polymerization processes can be used to generate polymeric nanoparticles from a wide range of 

monomers, allowing their characteristics to be tailored for particular medical applications. The primary kinds of 

polymer-based nanoparticle systems used in brain-targeted medication delivery are highlighted in this section. 

These consist of hybrid systems, naturally occurring polymer nanoparticles, and manufactured polymer 

nanoparticles [55]. For every category, the synthesis techniques and physical properties—like particle size, surface 

chemistry, and drug loading capacity—are examined. The capacity of nanoparticles to pass through the blood–
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brain barrier (BBB) is largely dependent on their size, shape, surface charge, and presence of surface ligands. By 

getting over the BBB's limitations, polymeric nanoparticles present a viable way to improve drug delivery to the 

brain [65]. Targeted drug delivery is made possible by their ability to target particular brain tissues or cells. These 

systems have the ability to release therapeutic substances at a regulated rate, guaranteeing ideal medication 

concentrations at the intended location and reducing side effects. PACA (polyalkyl cyanoacrylate) nanoparticles 

are one such instance, which have demonstrated promise in the delivery of drugs to the brain [56]. These PACA 

nanoparticles are frequently coated with polysorbate 80 and designed with cell-penetrating peptides or 

polyethylene glycol (PEG). This surface alteration improves their capacity to traverse the blood-brain barrier and 

helps them avoid being discovered by macrophages. By protecting medicinal substances from deterioration in the 

bloodstream, they also increase drug stability [57]. 

m) Synthetic polymeric nanoparticles 

Although poly (alkyl cyanoacrylate) (PACA) is best known for its usage in surgical adhesives, it has also been 

widely used as a suture material. PACA nanoparticles have been recognized for their biocompatibility and ease of 

degradation since they were first introduced by Couvreur et al. in 1972 [75]. Enzymatic activity, primarily from 

pancreatic fluid esterases or serum esterases when given orally or intravenously, causes these nanoparticles to 

degrade in the digestive tract. The length of the polymer's alkyl side chains can be changed to alter the degradation 

time, which is typically a few hours. As demonstrated by poly (butyl cyanoacrylate) (PBCA), for instance, 

polymers with longer chains, such as octyl, breakdown more slowly than those with shorter chains, such as butyl. 

The toxicity of the polymer is also influenced by the structure of these side chains. A variety of polymerization 

techniques, such as anionic, radical, and interfacial processes, can be used to create PACAs. Usually, interfacial 

emulsion polymerization or an acidic aqueous environment are used to create the nanoparticles [56,57]. 

Furthermore, by esterifying cyanoacetic acid with different alcohols, their characteristics can be adjusted for 

certain uses. 

 Study of neurological disorders 

Among the most complex and incapacitating diseases, neurological disorders such as Alzheimer's disease, 

Parkinson's disease, epilepsy, multiple sclerosis, and brain tumors affect millions of individuals worldwide [58]. 

Effective treatment of many disorders remains challenging despite significant advancements in pharmacological 

research because of the blood-brain barrier (BBB) [59], a highly selective and protective membrane that prevents 

the majority of medications from entering the central nervous system (CNS) [60]. In order to get over this barrier, 

researchers have created novel drug delivery systems that minimize systemic side effects while facilitating the 

passage of therapeutic molecules across the blood-brain barrier [61]. These strategies include exosomes, 

dendrimers, peptide-based delivery systems, intranasal administration methods, and nanocarriers such liposomes, 

solid lipid nanoparticles, and polymeric nanoparticles [62]. Additionally, chemical tactics like prodrugs and 

receptor-mediated transport as well as physical methods like targeted ultrasound have been studied [63]. Even 

though these techniques have demonstrated potential in improving drug bioavailability, brain targeting, and 

controlled release, there are still obstacles to overcome, especially when it comes to large-scale production, 

guaranteeing biocompatibility, preventing immunological reactions, and implementing these technologies in 

clinical settings [64].Among the most common neurological conditions, Alzheimer's disease, Parkinson's disease, 
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stroke, epilepsy, and multiple sclerosis each have their own pathogenic mechanisms and clinical manifestations. 

Memory, reasoning skills, and behaviour are the main areas affected by Alzheimer's disease, a chronic and 

progressive brain ailment. It is intimately associated with the accumulation of neurofibrillary tangles and beta-

amyloid plaques in the brain, which lead to a substantial loss of neurons, particularly in the cerebral cortex and 

hippocampus. This condition is the leading cause of dementia worldwide and primarily affects the elderly [33]. 

 Treatment of Neurodegenerative disorder 

Stroke (Ischemic and Hemorrhagic) 

The most costly and chronic incapacitating illness impacting adults worldwide is stroke. The blood-brain barrier 

(BBB) briefly opens during an ischemic stroke (minutes to hours), then undergoes a refractory phase before 

reopening for an extended length of time (hours to days). Restoring blood flow, or reperfusion, is essential to 

reducing brain damage, but it can also exacerbate damage, a condition called reperfusion injury [65]. Specifically, 

it contributes to the BBB's eventual reopening, which is connected to endothelium activation and reactive oxygen 

species (ROS) generation. The loss and disruption of tight junctions is the main cause of the BBB dysfunction 

that happens during an ischemic stroke. Because of the activation of microglia and the influx of peripheral immune 

cells, the inflammatory response is mostly responsible for the breakdown of the blood-brain barrier (BBB) and 

subsequent cell death after a stroke [66]. Nitric oxide (NO), reactive oxygen species (ROS), pro-inflammatory 

cytokines like tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), as well 

as chemokines like macrophage inflammatory protein-1 alpha (MIP-1α/CCL3), monocyte chemoattractant 

protein-1 (MCP-1/CCL2), and chemokine ligand CXCL-1, are released when microglia, the brain's main immune 

defences, are activated. These signalling molecules activate the nuclear factor kappa B (NF-κB) pathway and 

excite the brain's endothelial cells. Peripheral leukocytes are drawn in and infiltrate the brain tissue as a result, 

escalating and maintaining the inflammatory response [67]. 

 Alzheimer’s Disease 

The most noticeable sign of Alzheimer's disease (AD) is memory loss. Brain shrinkage, amyloid-beta (Aβ) peptide 

accumulation that forms senile plaques, hyperphosphorylated tau proteins that cause neurofibrillary tangles, and 

vascular alterations in the brain that cause cerebral amyloid angiopathy (CAA) are important pathogenic 

indicators. Amyloid-beta (Aβ) accumulation in brain tissue may be caused by impaired efflux transporter function 

on the apical side of blood-brain barrier (BBB) endothelial cells [68]. This theory is specifically supported by 

research that has demonstrated decreased expression of LRP and decreased activity of P-glycoprotein (P-gp) in 

both Alzheimer's patients and animal models. Furthermore, when activated, astrocytes and microglia can stimulate 

the formation of Aβ and play important roles in controlling its levels. In addition to being carriers of therapeutic 

chemicals, nanoparticles (NPs) can also be used as imaging tools or as a combination theragnostic agent [69]. 

These multipurpose systems frequently make use of nanoparticles—such as those composed of iron oxide, gold, 

silica, carbon nanotubes, or quantum dots—that naturally have imaging capabilities. Polymeric n-butyl-2-

cyanoacrylate (BCA) nanoparticles loaded with radio-labelled ¹²⁵I-clioquinol are one example. Therapies for AD 

primarily try to prevent the development of tau tangles and amyloid-beta (Aβ) plaques, or to stop their buildup 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 7, 2025 PAGE NO: 332



surrounding neurons. However, by boosting neurotransmitter levels, the majority of approved drugs only reduce 

symptoms and halt the progression of the disease [70]. 

 Parkinson’s Disease 

A major neurodegenerative condition linked to aging, Parkinson's disease (PD) is typified by a progressive loss 

of voluntary motor function. It is increasingly common as people age and is often accompanied by symptoms such 

as sadness, cognitive decline, and sleep difficulties. The major clinical treatment for Parkinson's disease (PD) is 

still pharmacological therapy, which includes drugs like catechol-O-methyltransferase inhibitors, dopamine 

receptor agonists, and monoamine oxidase B inhibitors, among others. Reduced cerebral blood flow and vascular 

alterations in the striatum and substantia nigra (SN) associated with impaired blood-brain barrier (BBB) integrity 

have been noted in PD patients [68]. Vascular endothelial growth factor (VEGF) expression has been linked to an 

increased blood vessel density surrounding injured dopaminergic neurons in the SN of monkeys [92]. 

Furthermore, it has been demonstrated that injecting VEGF into rats' SN disrupts the blood-brain barrier, resulting 

in the death of dopaminergic neurons and severe inflammation. Neurotoxins administered locally or systemically 

are frequently used by researchers to simulate dopaminergic neurodegeneration [71]. Stereotactic injection of 6-

hydroxydopamine (6-OHDA), which is unable to pass the blood-brain barrier, and systemic or localized MPTP 

delivery are common techniques. Although oxidative stress and fast neuronal death are caused by these toxins, 

they do not adequately represent the gradual character of the disease, non-motor symptoms, or protein misfolding 

processes. Additionally, the use of neurotoxins can directly cause neuroinflammation and harm different kinds of 

cells, making it more difficult to interpret the death of dopaminergic neurons. Research on Parkinson's disease is 

further aided by genetic models; for example, PD is known to be caused by duplications or triplications in the α-

synuclein (SNCA) gene or autosomal dominant point mutations. These models are useful for examining the 

disease's course as well as its underlying mechanisms. By detecting contrast agent leakage, non-invasive imaging 

techniques like magnetic resonance imaging (MRI), especially dynamic contrast-enhanced (DCE) and dynamic 

susceptibility contrast (DSC) MRI, are useful for assessing the integrity of the blood-brain barrier (BBB). Positron 

emission tomography (PET), single-photon emission computed tomography (SPECT), transcranial were 

sonography (TCS), and thermal imaging are other diagnostic methods for Parkinson's disease that can also be 

used to evaluate dysfunction of the autonomic nervous system. Dopaminergic medicines, which target dopamine 

pathways, and nondopaminergic agents, such as cholinesterase inhibitors, which operate on other brain pathways, 

are the two primary types of medications used to treat Parkinson's disease [72].  

MRI Analysis: White Matter Lesion (WML) in MRI Analysis Volume Estimation: The lesion segmentation toolkit 

in SPM8 was used to measure the white matter lesion volume, a known marker of small vessel disease. Both T2-

weighted FLAIR and T1-weighted MRI scans were used in this investigation to estimate the volume of WMLs.  

Analysis using Dynamic Contrast-Enhanced (DCE): The "realignment" tool in SPM125 was used to correct 

motion in a set of 160 dynamic MRI images by aligning each image with the sequence's first frame. The sagittal 

sinus was located on the final motion-corrected picture using Micro in order to compute the vascular input 

function. From this area, about 50 voxels selected for examination. 
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 Multiple Sclerosis (MS) 

The myelin sheath that surrounds nerve fibers is the main target of MS, a chronic inflammatory and autoimmune 

illness that affects the central nervous system. The BBB regulates the flow of immune cells between the 

bloodstream and central nervous system (CNS) and is essential for controlling immunological activity in the brain. 

The possible significance of activated protein C in maintaining the integrity of the blood-brain barrier has not yet 

been thoroughly investigated, despite the fact that it is well-known for its anticoagulant qualities and has 

demonstrated advantages in lessening the severity of disease in MS models. Examining this protective effect could 

lead to a new therapeutic approach for delaying the course of MS [88]. Additionally, annexin A1 levels in cerebral 

microvascular endothelial cells and plasma are specifically decreased in MS patients. Increased BBB permeability 

is seen in mice models devoid of annexin A1. Through interactions with the cytoskeleton in cultured brain 

endothelial cells, the anti-inflammatory protein recombinant annexin A1 can decrease BBB permeability and 

restore barrier integrity, suggesting that it has potential as a therapeutic treatment [94]. Matrix metalloproteinases 

(MMPs) 1, 2, 3, 7, 9, and 12 have increased activity in the early stages of multiple sclerosis (MS) [89]. It is well 

recognized that these enzymes weaken the blood-brain barrier (BBB), allowing leukocytes to enter and aiding in 

the breakdown of myelin. There is evidence that angiogenic alterations are also well-established in multiple 

sclerosis (MS), suggesting a possible connection between angiogenesis, BBB disruption, and inflammation of 

brain endothelial cells (BECs), all of which may contribute to the advancement of the disease. Although it is clear 

that BBB failure contributes to the development of MS, it is unclear if this dysfunction causes or results from the 

disease. However, it can be claimed that BBB disruption may really be a causative component, given that MS is 

an autoimmune condition and that immune cell entry into the central nervous system (CNS) is a crucial phase in 

its development [90]. 

 Epilepsy 

The most common method of diagnosing epilepsy involves a thorough review of the patient's medical history, 

including information about the type of seizures and the patient's health just before they occurred. A complete 

physical examination, with special attention to the nervous system, as well as a blood and other body fluid analysis 

are necessary [73]. A complete blood count, metabolic profiles, evaluations of thyroid and liver function, an 

electroencephalogram, and neuroimaging investigations should also be included in the diagnostic process [93]. 

The pharmacokinetic theory, the neural network hypothesis, the intrinsic severity hypothesis, the gene variant 

hypothesis, the target hypothesis, and finally the transporter hypothesis is some of the theories that have been put 

out in relation to refractory epilepsy [72]. Antiepileptic drugs must be administered via a variety of methods in 

order to treat both acute and chronic seizure disorders [74]. Antiepileptic medications are usually administered 

orally in the treatment of chronic epilepsy. When the oral route is impractical or a prompt clinical response is 

necessary, parenteral administration is used. Intranasal (IN), buccal, or sublingual methods can also be used to 

administer some drugs, especially for treatments that take place outside of a hospital. Oral formulations include 

extended-release medicines, tablets, capsules, suspensions, and solutions. Before entering the systemic 

circulation, drugs that are taken orally and absorbed through the gastrointestinal (GI) tract first pass through the 

liver, where first-pass metabolism may take place, resulting in decreased bioavailability [87]. 
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Applications  

Advanced Drug Delivery System Applications:  

1. Breaking through the Blood-Brain Barrier (BBB): New drug delivery techniques allow drugs to pass through 

the BBB, which normally keeps the majority of therapeutic agents from reaching brain tissue [75]. 

2. Nanoparticle-Facilitated Delivery: Polymer-based systems, liposomes, and solid lipid nanoparticles are 

examples of carriers that reduce side effects, improve targeting in neurological illnesses like Alzheimer's, and 

protect medications from degradation [76].  

3. Dendrimers and Micelle-Based Systems: By providing controlled drug release and enabling targeted 

distribution via receptor engagement, these structures can help cure diseases including glioblastoma and 

Parkinson's disease [77].  

4. Intranasal (Nose-to-Brain) Delivery: This method uses the olfactory pathway to avoid the blood-brain barrier, 

enabling the efficient delivery of neuropeptides, insulin-like substances, and anticonvulsants for epilepsy and 

neurodegenerative diseases [95]. 

5. Hydrogel Delivery Platforms: These systems serve to lower the frequency of dose and minimize systemic 

adverse effects by delivering drugs directly into the central nervous system (for example, by intrathecal 

injection) in a sustained and site-specific manner [78].  

6. Stimuli-Sensitive Systems: Perfect for treating inflammation or brain tumours, these clever delivery systems 

release drugs in reaction to particular stimuli like temperature, pH levels, or the presence of enzymes in diseased 

brain regions [79]. 

7. Improved Drug Effectiveness: By increasing the concentration of medications at the intended location, these 

systems enhance therapeutic results and enable the use of lower dosages [80].  

8. Improved Patient Compliance: Patients are more comfortable and more likely to follow treatment plans when 

non-invasive or minimally invasive delivery modalities, including nasal sprays or implanted devices, are used 

[81]. 

9. Personalized Treatment Methods: Tailored therapies that adjust to the patient's condition and the course of 

neurological disease are supported by customizable delivery systems [96]. 

 Future prospects of drug delivery system across BBB 

Future Prospects for Blood-Brain Barrier (BBB) Drug Delivery:  

1. Exosome-Based Delivery: delivering therapeutic agents such as proteins, siRNA, or small chemicals straight 

to the brain by using exosomes, which are tiny, naturally occurring vesicles made by cells, as targeted carriers 

[82]. 

2. Focused Ultrasound with Microbubbles: This non-invasive technique uses microbubbles and ultrasound to 

briefly break down the blood-brain barrier, enabling targeted and accurate medication delivery to brain tissue 

[78].  

3. Receptor-Targeted Nanoparticles: creating nanocarriers that mimic natural ligands, such insulin or transferrin, 

in order to use receptor-mediated mechanisms to pass the blood-brain barrier [75,71].  

4. Intranasal Therapeutic administration: Using the olfactory and trigeminal nerve routes, nasal administration is 

being developed as a non-invasive method of accessing the central nervous system [83]. 
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5. Biodegradable Polymer Carriers: Using degradable and biocompatible polymers to improve drug stability and 

decrease systemic exposure in extended-release medication formulations [84].  

6. Peptide-Enhanced Nanocarriers: Adding brain-targeting peptides to nanoparticles or liposomes to enhance 

BBB penetration and accomplish site-specific medication delivery [85,]. 

7. Gene and RNA-Based Therapies: Using viral and non-viral delivery methods, gene-editing technologies such 

as CRISPR and RNA interference are being developed to treat genetic brain illnesses [91].  

8. AI-Assisted Drug Development: Using machine learning and artificial intelligence to create medications with 

improved BBB penetration and optimal therapeutic qualities [86]. 
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