

SURVEY REPORT USING EXTREME PROGRAMMING - DEVOPS IN

MICROSERVICE ARCHITECTURE

Nagalambika1*, L. Manjunath Rao2

1*Research Scholar, Department of MCA, Dr. Ambedkar Institute of Technology, Bangalore,

Karnataka 560056, India

1*Corresponding Author Email Id: nagalambika_cs@msrcasc.edu.in

2Professor, Department of MCA, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka

560056, India

ABSTRACT

 The convergence of Microservice architecture, DevOps, and Extreme Programming in

agile methodology has drawn massive attention from both academia and industry. The software

industry is shifting towards agile methodologies and practices. This paper explores a survey report

on the innovative software development process using Extreme Programming, DevOps, and

Microservices to handle large, complex, and distributed systems. Successful agile implementation

needs an efficient transformation model. We have conducted a survey to identify whether extreme

programming and DevOps practices can successfully coexist with microservice architecture and

their effects on development speed, component reusability, and overall architecture. Fifty people

from diverse IT organizations have been interviewed, hypotheses have been designed, and results

have been concluded based on the survey. The participants have also given recommendations that

can help researchers work on certain factors.

Keywords: Microservice architecture; Devops; Extreme programming; Agile methodology;

Distributed systems; Component reusability.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 458

492574725
Textbox

1. INTRODUCTION

 Extreme Programming (XP) is an agile methodology that emphasizes principles like test-

driven development, continuous integration, and frequent short releases. When XP is combined

with Microservice architecture and DevOps practices, it offers a strong framework for developing

and maintaining large, complex, and geographically distributed applications. It enhances software

development speed, agility, and quality [1], [2]. This paper delves into a survey-based exploration

of an innovative software development process that leverages the synergies between Extreme

Programming, DevOps, and Microservices to address the challenges posed by large, complex, and

distributed systems. Microservice architecture emerges from real-world architectural patterns.

Using lightweight communicating mechanism services are collaborated to meet their goals.

Netflix, Amazon and Uber have adopted microservices architecture. This approach is an

independent way of creating applications that can interoperate and integrate efficiently to promote

low coupling and high cohesion. Maintenance efforts can be minimized by avoiding the effect of

changes from one microservice to another. Services should be deployed distinctly to enhance

independence and design maintainability. Maintenance is either stable or adaptive depending on

functional requirements. This architectural style is based on developing a package of small services

in a single application, where each service is running independently [3]. Due to this researcher are

trying their best to provide adequate support to enterprises leading to the quick rapid development

of heterogeneous tools and solutions for microservices implementation.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 459

1.1 Problem Statement

 Extreme Programming, a well-known agile methodology, is unable to manage complex

and geographically distributed applications necessitate exploration of alternative approaches.

Integrating XP with Microservice architecture and DevOps practices presents an opportunity to

transform the software development process. Microservices help break down large applications

into small-scope but independently functioning services to provide agile service plus flexibility for

developers, but this does not come without challenges. A microservice implements functionality

over a network using lightweight protocols [4]. Concurrently, Microservice architecture and

DevOps practices have gained traction for their ability to enhance agility, scalability, and resilience

in software systems [2], [5]. Microservices helped with faster development and change cycles.

Additionally, hypothesis testing has been conducted against each objective outlined in the study.

1.2 Purpose of Study

The purpose of this survey study includes the following objectives:

 Development of innovative software development process using extreme programming,

DevOps, and microservice architecture to execute medium, large-scale, and complex

projects.

 Use of proposed process in extreme programming to provide support to execute

geographically distributed projects, if programmers are located geographically.

 The use of the proposed process for both code and design-centric development.

 The proposed process provides an overall design of the system and provides necessary

documentation.

 The proposed process supports the reusability of existing components.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 460

Figure.1: Steps involved in Survey

1.3 Research Questions

From the above-mentioned objectives, the resulting research questions are mentioned as:

 Is it possible to develop a software development process that uses microservice architecture

in extreme programming to execute medium, large-scale and complex projects?

 Does the proposed process support to execute geographically distributed projects, if

programmers are located geographically?

 Does the proposed process provide an overall design of the system and provide the necessary

documentation?

 In contrary to XP being code centric, can it be used for design centric development?

 Does the proposed process support component reusability?

1.4 Formulation of Research Hypothesis

Based on the above research question we have formulated seven hypotheses as follows:

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 461

1.4.1. Hypothesis 1

Ho: There exist no significant relations between using XP and microservice architecture to execute

large, complex and distributed applications.

H1: There exists a significant relationship between XP and microservice architecture to execute

large, complex and distributed applications.

1.4.2. Hypothesis 2

Ho: The proposed XP practices are necessary for distributed applications.

H1: The proposed XP practices are not necessary for distributed applications.

1.4.3. Hypothesis 3

Ho: The proposed process does not support Full Development Plan and Release Plan. Hence XP

is still code-centric, not design-centric development.

H1: The proposed process supports Full Development Plan and Release Plan. Hence XP is still

code-centric, not design-centric development.

1.4.4. Hypothesis 4

Ho: The proposed process does not provide overall design of the system and provide necessary

documentation.

H1: The proposed process provides overall design of the system and provides necessary

documentation.

1.4.5. Hypothesis 5

Ho: The proposed process does not support component reusability.

H1: The proposed process support component reusability.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 462

2. REVIEW OF LITERATURE

 In this paper, the authors have described microservices-based NFV architecture. Not only

benefits and challenges but also the results are emulated under KPIs. The complexities of

microservices in telecom networks have been analysed along with a discussion of AI in complex

decisions. Authors have proposed that artificial intelligence can be used to decide aggregation and

disintegration. Authors have also investigated the benefits and challenges of this new approach

through analysis and actual testing by providing results for the performance of the microservices

approach under some KPIs and set the contacts for applicability of the same in NFV [4].

 In this paper, the authors have introduced the idea of variability in microservices. The

progress examples of microservices and SPLs are the same in terms of facilitating reuse and

customization. In terms of functionality six challenges are presented that relate SPL with

microservices. Authors have intended to get the best of both by combining [6]. While delivering

commercial-grade software time and place plays an important role. This approach has worked on

independent tools. The complex test set of independent tools helped in reducing the delivery time.

But this method may not be upright for all demeanours of software engineering [7].

 Although cloud and mobile computing are shaping the applications with their unique

features like scalability and fault tolerance. But the challenges like security and reliability cannot

be overseen. Behaviour-driven development has been popular for the last few years. It got its

popularity from its executable acceptance tests (EAT). These tests describe the expected behaviour

and acceptance criteria of features using simple readable syntax. While applying the BDD

framework reusability, maintainability and auditability are the major areas of concern. A reusable

but automated testing architecture presented to report all these questions. BDD acceptance tests

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 463

can be applied across multiple repositories leading to reducing the struggle of developers and

testers. They are allowed to independently iterate on separate repositories [8].

 Authors have deeply studied containerizations and component adoption in monolithic

systems. To understand common patterns in component selection set of open-source projects are

identified in terms of functional size to be shared among different teams. This helped increase the

fitness and quality of collected data [9]. During XP2018 the first set of interviews was conducted,

while in [9] goals, methodology, problems, advantages and challenges of microservices applied in

an agile development process are discussed. The results of a XP2017 workshop are analysed. The

adoption of DevOps principles promotes seamless collaboration between development and

operations teams, leading to enhanced deployment frequency and reliability [10], [11].

Furthermore, geographical dispersion of development teams poses additional coordination and

communication challenges, which need to be addressed for successful project execution [1], [12].

 Authors in [13] have proposed a framework to automatically integrate microservices into

the built system and also provide dynamic scalability on multiple platforms. Distribution

scalability is handled by the server between clients. Chosen parameters are combination, execution

time and the number of calls. The future direction of this research is to the successful integration

of the system into a website or API. This paper reports a survey examine agile requirements

engineering (RE). It is also discussed that if requirements engineering can remedy the challenges

of traditional requirement engineering and the new agile challenges [14]. Based on above

literature, a questionnaire-based survey is designed. The respondents are 50 practitioners from a

large software development company. The experts shows that agile practices address some

requirement engineering challenges. Authors in [15] have stated coherence as the critical stage for

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 464

distributed agile transformation. Authors have also stressed on provision of dedicated resources to

support the transformation.

 Authors have proposed a system where addition of microservices is easy and automatic.

The benefit of the proposed approach lies in the easy scalability of the system [16]. In authors have

worked on academic information system based on advanced personal extreme programming

system. The development process is tested and four proposed features have produced valid results.

 Authors in [17] provided insights into distributed systems, highlighting considerations for

designing resilient and scalable architectures in distributed environments. In [18] presented a case

study on the implementation of microservices architecture, offering insights into real-world

challenges and solutions encountered during the adoption process. Authors have deeply studied

advocated for an agile approach to software development using cloud computing technologies,

emphasizing the benefits of scalability and flexibility offered by cloud-based platforms [19].

 Author in [20] focus on testing challenges and solutions in microservices, shedding light

on critical aspects of software quality assurance., while [21]-[23] explore dynamic microservices

architecture and discuss edge and fog computing architectures. In [24]-[25] analyze microservices

in industrial big data analytics, provide insights into architectural and operational aspects of

microservices, while examine microservices for IoT applications in smart cities.

3. RESEARCH METODOLOGY

 This section describes the statistical methods adopted and the final results. The respondents

are from different designations, age groups and companies. A case study was carried out in an

organization to identify XP practices, Continuous integration and Microservice architecture. The

selected organizations develop and use extreme programming for large size and complex software.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 465

A questionnaire was prepared to accesses the suitable practices for such large scale and complex

software development. Online shopping application was used for this study, as companies were

reluctant to give their data for this study due to privacy concerns and organizational intellectual

property. The survey's objective is to examine the reasons for switching from monolithic to

microservices-based architectures as well as its benefits and drawbacks. We organized the

questions based on the data we needed to gather like company and personal information, role of

interviewees and role of software. (As shown in Figure 1)

3.1 Population

 Sample size for the research comprises a diverse group of professionals from various IT

designations, including Managers, Team Leaders, Architects, IT Consultants, and Design

Specialists. The sample is characterized by a range of experience levels, spanning from 2 to 22

years. This diversity ensures a comprehensive exploration of insights and perspectives within the

dynamic landscape of the information technology sector.

3.2 Sampling Frame

Table 1. Shows the sampling frame for N=50

S. No Designation
Experience

in Years
Frequency

1

Manager (Delivery Manager, Senior Project

Manager, Program Manager and QA

Manager)

15-22 11

2 Team Leader 10-17 10

3 Architect 10 9

4 IT Consultant 2-17 5

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 466

5 Design Specialist 15-20 5

6 Academia 3-15 >10

3.3 Research Design

 The descriptive, non-experimental method of the survey has been adopted. The respondents

of the survey are working in various IT companies, and are avid users of microservices. The survey

includes primary data collection using the mode of Questionnaire.

3.4 Research Instrument

 This research consists of a questionnaire with closed-ended questions. It comprises seven

key elements. These elements cover the overall objective of the study. For grading, we have used

a 5-point Likert scale. This scale starts from 1 to 5 points; strongly agree receives 5 points, and

strongly disagree receives 1 point. The information was gathered from a sample of 50 respondents

who worked for private companies. The data were then analyzed using statistical methods like the

mean, standard deviation, and t-test.

3.5 Data Analysis

To examine and assess the data, we have adopted following methods

1. Mean

2. Standard deviation

3. T-test to compare groups

 For the study's analysis, Stratified Random Sampling, Simple Descriptive Analysis, and an

Independent Sample t-Test are used (3). Statistical significance is defined as a p-value of 0.05 or

less (typically ≤ 0.05). Given that there is a less than 5% chance that the null hypothesis is true

(and that the data are random), this implies strong evidence against it. As a result, we accept the

alternative hypothesis and reject the null hypothesis if the p-value falls below your level of

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 467

significance, which is commonly p 0.05. In total, this research comprised of five objectives. Data

is collected by means of questionnaire.

 The first objective of the research is to develop a software development process, to execute

medium, large-scale, complex Projects using extreme programming and micro service

architecture.

 The following sections of this research paper shows the results of the designed hypothesis,

altogether this research comprised of five objectives which are discussed in forthcoming sections.

Table 2: Shows the result of hypothesis with respective to the roles

Research Question
p-value

Architect Developer QA manager Delivery manager

Suitability for large and

distributed applications?
0.023 0.021 0.022 0.021

Support component

reusability
0.021 0.022 0.024 0.221

Loosely coupled 0.016 0.011 0.013 0.012

Support over the globe 0.031 0.021 0.032 0.033

Improvement in

development speed and

efficiency

0.052 0.055 0.061 0.012

Improvement in quality

of applications
0.031 0.032 0.023 0.022

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 468

Figure 2: The graphical representation shows the result of hypothesis with respective to the roles

Table 3: Shows the type of XP practices that can be implemented in Microservices

XP practices implement

in the Application

0.002

0.003 0.002 0.002

XP Practices
p-value

Architect Developer QA manager Delivery manager

Daily Stand-up meetings 0.022 0.031 0.031 0.034

Adaptive planning 0.021 0.021 0.033 0.023

Code Control 0.012 0.044 0.039 0.034

Continuous Integration 0.044 0.009 0.025 0.005

XP Project management 0.077 0.023 0.088 0.067

Visual Indicators 0.033 0.076 0.078 0.067

Code Gallery 0.008 0.008 0.021 0.012

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 469

Figure 3: Graphical representation shows the type of XP practices that can be implemented in

microservices

 The results pertaining to the first objective are presented in Table 2 and Figure 2,

showcasing the outcomes of hypothesis testing concerning various roles involved in the

development process including "Architect," "Quality Assurance Manager," "Developer," and

"Delivery Manager. Table 2 illustrates the statistical significance, represented by p-values,

regarding the suitability of the proposed process for large and distributed applications, support for

component reusability, loose coupling, global support, enhancement in development speed and

efficiency, quality improvement of applications, and implementation of XP practices within the

application. Similarly, Figure 2 provides a graphical depiction of these results across different roles

involved in the project.

 Additionally, Table 3 and Figure 3 provide detailed insights into the specific XP practices

that can be successfully applied to facilitate the execution of medium to large-scale, complex

projects within the framework of extreme programming and microservice architecture. These

findings are pivotal for grasping the practical utility and potential ramifications of integrating XP

methodologies into the realm of microservices development.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 470

 The second objective of this research paper is to investigate how the proposed process,

with support from extreme programming, facilitates the execution of geographically distributed

projects, if programmers are located geographically. The values are computed on the basis of

release 1, 2, 3 and 4.

Table 4: Geographical execution of program

Figure 4: Geographically program execution

Geographically

program execution

p-value

Release 1 Release 2 Release 3 Release 4

Code Exhibit 0.023 0.021 0.022 0.021

User stories

completed
0.021 0.022 0.024 0.221

User stories Increase 0.016 0.011 0.013 0.012

Story Points 0.031 0.021 0.032 0.033

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 471

 The table 3 and figure 4 show the result that for distributed applications, story points,

increase in user stories, User stories completion and code exhibit are the necessary practices. The

result from the table (2) supports this.

 The third objective of this research is that by using proposed process, extreme

programming can be used as both code and design centric development. For this we have

considered the variables called microservice architecture, code reusability and new code. The

results have shown that by implementing the proposed approach the extreme programming can be

implemented as both code and design centric way.

Table 5. Code and Design Centric Development

XP Process

p-value

Architect Developer QA manager
Delivery

manager

Microservice

Architecture
0.031 0.022 0.024 0.221

Code Reusability

and new code
0.016 0.011 0.013 0.012

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 472

Figure 5: Code and Design centric Development

 Figure 5, 6, 7 are given The fourth objective of this research is that the proposed processes

provide overall design of the system and provide necessary documentation, as evidenced by Table

6's responses from a 21-day sprint showcasing performance metrics like training hours, iterations,

architectural support, collaboration, satisfaction, interest levels, and velocity targets. These

responses serve as evidence of the proposed processes' efficacy in delivering comprehensive

system design and documentation and their alignment with different project roles, supported by p-

values indicating statistical significance.

Table 6: Full Development Plan

S. No
Project Performance

Measurements
Expected

Architect

Developer

QA

manager

Delivery

manager

1

Numbers of Hours

Spent in Training

and Up gradations.

40 hours --

(8 Hours

Each day for

5 Days).

0.03 0.02 0.04 0.04

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 473

2
Number of Iterations

for 4 releases
6 Iterations. 0.02 0.01 0.02 0.03

3

Application

Architectural Design

Change support

yes 0.03 0.01 0.02 0.03

4 Team Collaboration High 0.005 0.006 0.003 0.003

5
Satisfaction (working

environment/Culture)
High 0.02 0.01 0.02 0.03

6 Interest(buy-in) High 0.03 0.02 0.03 0.04

7
Velocity Increase

(Speed of deliverable
4% 0.03 0.03 0.04 0.04

8 Code Gallery

8.6

Interest(buy-

in) High

0.02 0.03 0.03 0.03

9 Weekly work Hours

8.7 Velocity

Increase

(Speed of

deliverable)

4%

0.03 0.03 0.02 0.02

The fifth objective is that the proposed process support reusability of existing components.

The results of this have are shown in table (1). The results indicate that there is a significant

connection between extreme programming and microservice, the lesser values of ‘p’ test indicate

rejection of the null hypothesis. Table 2, shows that the value of ‘p’ is less than ‘0.05’, which

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 474

indicates that the null hypothesis is rejected. This means that the proposed XP practices are

necessary for distributed applications. The proposed process also supports component reusability.

The proposed process improves the development speed and cost-efficiency of software

applications. The proposed process support loosely coupled and deployed across the globe. The

proposed process affects the quality of large and distributed applications, proposed process

supports the Full Development Plan and Release Plan. So, XP can be used as both code and design-

centric development architecture to execute large, complex and distributed applications.

4. INFERENTIAL STATISTICS

 The results indicate that there is a significant connection between extreme programming

and microservice, the lesser values of ‘p’ test indicate rejection of the null hypothesis. Table 2,

shows that the value of ‘p’ is less than ‘0.05’, which indicate that the null hypothesis is rejected.

This means that the proposed XP practices are necessary for distributed applications. The proposed

process also supports component reusability. The proposed process improves the development

speed and cost-efficiency of software applications. The proposed process support loosely coupled

and deployed across the globe. The proposed process affects the quality of large and distributed

applications; proposed process supports the Full Development Plan and Release Plan. So, XP can

be used as both code and design-centric development architecture to execute large, complex and

distributed applications. The survey has also reported the issues faced while migration towards the

distribution.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 475

Figure 6: Issues faced while after agile adoption

Figure 7: Effect of agile on productivity of the teams

5. SHORTCOMINGS OF THE APPROACH

1. The quality of results from hypothesis testing can be impacted by a number of factors. We had

to rely on the stopping rules, which were open to numerous interpretations and comparisons, in

order to evaluate the p value for our observation.

2. The estimation value is while focusing on statistical significance of the data we have ignored

the estimation value while repeating the tests that sometime resulted in ambiguous test value.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 476

3. Since it was challenging to find candidates with experience in the migration to microservices-

based architectural styles, we did not pre-plan the sample of interviews.

4. To understand the costs and importance of migration from monolithic to distributed

microservices. We have collected the information with the help of questionnaire that consist of

closed and open-end questions. In order to score their responses, we requested that the participants

use a five-point Likert scale, where 0 denoted "completely irrelevant" and 4 denoted

"fundamental."

6. FINDINGS

 Everyone who took part consistently stated and ranked software maintenance as being of the

utmost importance, which is one of the findings that led to the adoption of microservices-

based architectures. Only migration experts mentioned additional factors for acceptance, such

as scalability, assigning responsibilities to independent teams, and simple DevOps support.

 Monolithic systems can be made simpler by using the modular architecture of micro services.

Distributed development is made simpler by breaking a system down into distinct, self-

deployable services that allow development teams to make modifications and test their service

independently of other developers. Additionally, the modest size of each microservice helps

to make the code more understandable, which enhances its capacity to be maintained.

 It is simpler to scale microservices than it is to scale monoliths. Monolithic systems must be

scaled with significant hardware investment and frequently with code alterations. If a

particular component is the bottleneck, more potent hardware can be deployed, or many

instances of a single monolithic program can run across various services and be controlled by

a load balancer.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 477

 A specific microservice that is the bottleneck in this scenario can be containerized and run

across multiple hosts in parallel without relocating the entire system to a more powerful

machine.

7. CONCLUSION

 The proposed process can make the development faster, cost-efficient including loose

coupling and scalability across the globe, and provide the necessary documentation. The

documentation helps efficient coding based on skillset. This approach is both code and design-

centric without affecting the quality of large and distributed application. The reusability

component reduces the development effort time and provides quality software. It can handle

disaster Management with the help of a data center by applying a load balancer. In future, we have

planned to conduct interviews of industry professionals who are using and implementing

microservices to better understand if and why practitioners follow some best practices and if they

do not follow some practices what are the reason behind it. Our future work also includes an

industrial-scale case study with companies that adopt microservices to monitor real software

developers developing microservices-based projects to report the problems they face and the

solutions they apply.

8. RECOMMENDATIONS AND SUGGESTIONS FROM THE STUDY

1. Using Microservice Architecture and DevOps combination we can ensure the quality of

application due to in max phase of DevOps testing is carried out.

2. As concert to Microservice and Agile (XP) is best suited for the large and distributed project,

due to independent development, deployment and loosely coupled features.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 478

3. This process works very well with all kinds of projects.

4. 40 Hours Spent in Training is depending on the complexity of the requirements

5. Productive “Weekly work Hours” is less when considered some ad-hoc meetings/ Sick

leaves/Employees leaving the organization. Etc., hence it is always considering some buffer

hours during the planning.

6. Agile methodology is good for the organization and client where it will be more burdens to

the developer and tester as they need to complete the sprint on time and for this, there is a

chance to do mistakes in development and testing due to short of time and pressure.

7. This supports a larger kind of application and a well-suited design process.

8. Each sprint has 10 days, out of which 8 days for the development cycle, 1 day for sprint

planning and 1 day for sprint review and retrospective.

9. For each day we consider only 6 hours for development work. And 2 hours for meetings and

training.

10. Here the assumption is that everyone is available for the duration of the sprint and both

planned and unplanned leaves are considered.

11. The user stories are clear to everyone with requirements are frozen.

ACKNOWLEDGMENT

I, sincerely thank all the participants from diverse IT organizations for their invaluable

insights that shaped this survey. Special appreciation goes to research guide for their exceptional

guidance and unwavering support, which were instrumental in shaping the outcomes of this study.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 479

REFERENCES

[1] M. Fowler, “Microservices: A definition of this new architectural term,” 2014.

Retrieved from https://martinfowler.com/articles/microservices.html

[2] S. Newman, “Building microservices,” in O'Reilly Media, Inc., 2021.

[3] Davide T, Valentina L, Claus P, and Andrea J, “Microservices in Agile Software

Development: a Workshop Based Study into Issues, Advantages, and Disadvantages,”

XP '17 Workshops, Cologne, Germany, 2017, doi: 10.1145/3120459.3120483.

[4] B. Elizabeth, W. Krzysztof, and R. Bjorn,” A case study on benefits and side-effects of

agile practices in large-scale requirements engineering,” in proc of First workshop on

Agile Requirements Engineering, pp. 1-5, 2011, doi: 10.1145/2068783.2068786.

[5] R. C. Martin, “Clean architecture: A craftsman's guide to software structure and

design,” Prentice Hall, 2017.

[6] K.A. Harish, and B. J. Prabha,” Scientific assessment and evaluation of ineffectual

human phenomenon in acquisition design and development,” in pro of Materials Today,

2020, doi: 10.1016/j.matpr.2020.12.1074.

[7] B. Mihai, I. Adrian, and G. Daniela, “Dynamic microservices to create scalable and fault

tolerance Architecture,” in Proc Computer Science 159, pp. 1035-1044, 2019, doi:

10.1016/j.procs.2019.09.271.

[8] H. Mike, J. Michael, Patrick Ct, Byron C, Jonathan PB, Tiziana M,” Software

engineering and formal methods,” Communications of the ACM, Vol.51, No.9, pp.54–

59, 2008.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 480

[9] M. Nekovee et al., “Towards AI-enabled microservice architecture for network function

virtualization,” in Proc of IEEE Eighth International Conference on Communications

and Networking, pp. 1-8, 2020.

[10] T. Woods and M. Lin, “Container orchestration and microservices: An analysis of

Docker Swarm and Kubernetes, “in IEEE 23rd International Enterprise Distributed

Object Computing Conference, pp. 54-61, 2019.

[11] W. Vogels, “Beyond ACID: A new paradigm for transaction processing,” ACM Queue,

vol. 4, no. 6, pp.48-55, 2006

[12] C. Yanaga, and M. Toum, “Microservices: The pitfalls,” IEEE Software, vol.33, no.3,

pp.122-124, 2006.

[13] M. Rahman and J. Gao, “A reusable automated acceptance testing architecture for

microservices in behavior-driven development,” in Proc of IEEE Symposium on

Service-Oriented System Engineering, pp. 321-325, 2015.

[14] VO Rory, E. Peter, MC Paul,” Continuous Software Engineering – A Microservices

Architecture Perspective,” Journal of Software: Evolution and Process, Vol.29, No. 11,

2017.

[15] L. Valentina, and S Outi, “Software components selection in microservices-based

systems,” in Proc of Conference on Agile Software Development: Companion, 2018.

[16] KGA Wesley, K. Jacob, DFM. Willian, “Variability Management meets Microservices:

Six Challenges of Re-Engineering Microservice-Based Webshops,” Pervasive Health:

Pervasive Computing Technologies for Healthcare, pp.14–24, 2020.

[17] C.Saul, and M. Burrows, “Distributed systems for fun and profit,” 2018. Retrieved from

https://book.mixu.net/distsys/

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 481

[18] J. Pokorny, J. Vojtisek, and I. Kolingerova, “Microservices architecture

implementation: A case study,” in Proc of the 7th International Conference on

Information Management and Engineering, ACM, pp. 153-157,2021.

[19] M. Smith and P. Trott, “Developing software as a service: An agile approach using cloud

computing,” Addison-Wesley Professional, 2017.

[20] R. Kazhamiakin and T. Männistö, “A survey of testing challenges and solutions in

microservices,” Journal of Systems and Software, 171, 110897, 2021.

[21] K. Kugler, U. Hohenstein, and W. Hasselbring, “Dynamic microservices architecture

using function-as-a-service,” Future Generation Computer Systems, 117, pp.181-193,

2021

[22] R. Polli, and Di Francesco Maesa, D., “Microservices-based architectures for edge and

fog computing: A survey,” Future Generation Computer Systems, 120, pp.503-527, 2021

[23] Y. Zou et al., “Microservice architecture and its application in industrial big data

analytics,” Computers in Industry, vol. 124, 103408, 2021

[24] R.F Medeiros et al., “Architectural and operational aspects of microservices: A

systematic literature review,” Journal of Systems and Software, 176, 110938, 2021

[25] H. Lee, et al., “Microservices-based architecture for IoT application in smart cities,”

Journal of Network and Computer Applications, Vol.182, 102973, 2021.

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 482

Author Biography

Nagalambika Swamy is a Research Scholar, At Visvesvaraya Technical university and currently

working as Assistant Professor in the Department of Computer Science at

Ramaiah College of Arts, Science, and Commerce, Bangalore, India. She has

worked in various Software Industry and her Research areas are Software

Engineering, Data Science, and Artificial Intelligence With a total of 16 years

of experience in academia and industry. She can be contacted at email:

nagalambika.swamy@gmail.com and institution mail id: nagalambika_cs@msrcasc.edu.in

Dr. L. Manjunatha Rao holds an MCA, MBA, M.Phil, and Ph.D., and serves as a Professor at

Master of Computer Applications department at Dr. Ambedkar Institute of

Technology, Bengaluru. He has awarded Ph.D from Vinayaka Mission

University, Tamil Nadu and obtained Ph.D degree from SV University,

Tirupati, Andrapradesh. Dr. Rao's research interests include software

engineering and e-Governance, with 36 publications and 61 citations to his credit. He can

be contacted at email: manjuarjun2004@yahoo.com and institution mail id:

manju.mca@drait.edu.in

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 483

