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Abstract - This paper proposes a content-based music information retrieval (CBMIR) system for Indian light music, 
allowing users to retrieve a ranked list of songs based on melody features. The system enables query-by-humming 
(QbH), where the user's hummed melody is compared with indexed song melodies. Chroma features, representing the 
pitch content of music, are extracted and indexed using the hierarchical data format version 5 (HDF5) format for 
efficient storage and retrieval. Fast dynamic time warping (FastDTW) is utilized to compare melody features, ensuring 
rapid and accurate similarity matching. The HDF5 indexing allows for scalable retrieval even with large music 
datasets, while FastDTW reduces computational time without compromising accuracy. This system offers an intuitive 
solution for users to find songs based on melody, even if they only recall the tune. 
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I.  INTRODUCTION 

Music Information Retrieval (MIR) has gained significant attention in recent years [2], with various techniques 
being developed to enable efficient search and retrieval of music based on audio content [3][4][7]. Traditional 
text-based searches, such as those relying on song titles or lyrics, may not always be effective, especially when 
users only recall the melody of a song [8]. To address this limitation, Content-Based Music Information Retrieval 
(CBMIR) has emerged as a promising approach that enables users to search for songs using musical features 
extracted from audio signals [1][5][6]. 

Indian light music, which encompasses a diverse range of melodies, presents unique challenges for CBMIR 
systems due to variations in tempo, pitch modulations, and expressive ornamentation. A robust retrieval system 
must be capable of capturing these melodic characteristics and efficiently comparing them with a database of 
songs. 

This paper proposes a CBMIR system specifically designed for Indian light music, allowing users to search for 
songs through Query-by-Humming (QbH) [1][5][6]. The system extracts chroma features, which effectively 
represent the harmonic and melodic content of a song [6], and indexes them using the HDF5 format for efficient 
storage and retrieval [9][10]. To achieve fast and accurate similarity matching, the system employs FastDTW 
[11][12][13][14], which aligns the hummed query with pre-indexed melodies while minimizing computational 
complexity [4]. 

The key contributions of this work include: Feature Extraction Using Chroma Representation – Capturing the 
melodic structure of Indian light music for accurate retrieval [10], [11]. HDF5-Based Feature Indexing – Efficient 
storage and retrieval of large-scale audio datasets. FastDTW for Similarity Matching – Improving query response 
time while maintaining high retrieval accuracy [8]. Scalable and User-Friendly QbH System – Allowing users to 
find songs based on melody without requiring textual metadata. 

The remainder of this paper is structured as follows: Section II discusses related work in CBMIR and QbH. Section 
III describes the proposed methodology, including feature extraction, indexing, and similarity computation. 
Section IV presents experimental results and performance evaluation. Finally, Section V concludes the paper and 
suggests future research directions. 

 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 5, 2025 PAGE NO: 45



II. RELATED WORK 

Content-based music information retrieval has been widely explored in recent years, with various techniques 
developed for efficient music search and retrieval [15][2]. QbH is one of the most intuitive approaches, allowing 
users to retrieve songs based on melody rather than metadata such as lyrics or artist names [1]. Several studies 
have focused on feature extraction, indexing methods, and similarity matching techniques to improve the accuracy 
and efficiency of QbH systems [16][17].  

A. Melody Representation and Feature Extraction 

Melody is a crucial component in music retrieval systems, and various feature extraction techniques have been 
proposed to capture its characteristics. Chroma features have been extensively used to represent the harmonic and 
melodic content of a song, as they provide a compact and robust representation of pitch information [18]. 
Researchers have also explored pitch contour extraction and mel-frequency cepstral coefficients (MFCCs) for 
capturing melodic structures [19][20]. However, chroma-based representations are more effective for melody-
based retrieval, especially in Indian light music, where pitch variations and ornamentations are prevalent [18]. 

B. Indexing Methods for Efficient Retrieval 

Efficient indexing is essential for handling large-scale music datasets. Traditional indexing techniques, such as k-
d trees and hash-based methods, have been applied in MIR systems [15]. More recently, HDF5-based indexing 
has gained popularity due to its ability to store large feature datasets while enabling fast retrieval [9][10]. HDF5 
provides an efficient hierarchical storage format that optimizes access times for high-dimensional feature vectors, 
making it suitable for real-time music retrieval applications [21]. This study proposes a QbH method that 
constructs an index of melodic fragments by extracting pitch vectors and efficiently searches for similar fragments 
using locality sensitive hashing (LSH). The method achieved a mean reciprocal rank of 0.885 for 2,797 queries 
when searching a database of 6,030 MIDI melodies [7]. 

C. Similarity Matching Techniques  

To compare a user’s hummed query with stored melodies, various similarity measurement techniques have been 
proposed. DTW is a widely used method for aligning time-series data, allowing for variations in tempo and timing 
[11][13]. Traditional DTW, however, has high computational complexity, making it less suitable for large datasets. 
Recent advancements in FastDTW have significantly reduced computational overhead while maintaining high 
accuracy, making it an ideal choice for QbH systems [12]. Other techniques, such as hidden Markov models 
(HMMs) and convolutional neural networks (CNNs), have been explored for melody matching, but they often 
require extensive training data and computational resources [22]. 

D. Content-Based Retrieval for Indian Light Music 

Most existing CBMIR systems focus on Western music, where structured chord progressions and fixed scales 
simplify melody matching [15]. However, Indian light music presents unique challenges due to its diverse scales 
(ragas), ornamentations (gamakas), and non-uniform rhythmic patterns [23]. Prior research on Indian classical 
and light music retrieval has explored pitch-based representations, but few studies have specifically optimized 
QbH systems for this genre [19].  

III.   PROPOSED METHODOLOGY 

 
This section describes the methodology used for the CBMIR system, focusing on QbH for Indian light music. The 
system consists of four main stages: audio feature extraction, feature indexing, query processing, and similarity 
matching using FastDTW. The overall workflow is illustrated in Figure 1. 
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A. Audio Feature Extraction Using Chroma Features 

Melody is the most distinguishing characteristic in music retrieval systems, and capturing it effectively is essential 
for accurate query matching [18]. This system extracts chroma features, which represent the distribution of pitch 
classes over time and are well-suited for harmonic and melodic content analysis [24][11]. During preprocessing, 
input songs are standardized by converting them to a uniform sampling rate (22.05 kHz) and mono format for 
consistency [4]. Additionally, noise reduction and normalization techniques are applied to enhance signal quality 
and reduce variability in recordings [26]. For chroma feature extraction, the Librosa library is employed to 
compute chroma short-time Fourier transform (STFT) features [27], which are calculated in overlapping frames 
to provide a fine-grained representation of melodic variations. Chroma feature extraction plays a vital role in 
music and audio analysis, particularly in applications such as Music Information Retrieval (MIR) and Query-by-
Humming (QbH) [11]. The process involves a series of mathematical transformations to convert audio signals 

into chroma vectors, enabling accurate melodic analysis and retrieval in content-based systems [18][11]. 

  

B. Fourier Transform and Spectrogram Generation 

To begin, we need to transform the raw audio signal into a frequency domain representation. This allows us to 
analyze the harmonic content of the signal, which is essential for identifying pitch classes [11]. The STFT is 
applied to the audio signal to divide it into overlapping frames. For each frame, we compute the Fourier Transform 
to obtain the frequency components. The STFT X (t, f) is given by: 

𝑋(𝑡, 𝑓) = ∫ 𝑥(𝑡)
ஶ

ିஶ
⋅ 𝑤(𝑡 − 𝑡ᇱ) ⋅ 𝑒ି௝ଶగ௙௧ᇲ

𝑑𝑡ᇱ              (1) 

Where x(t) is the original audio signal. w(t−t′) is a window function (Hamming or Hanning window) applied to 
ensure smooth transitions between frames [28]. f represents frequency, and t represents time [29]. The result is a 
time-frequency representation where X (t, f) gives the amplitude of the frequency f at time t [30]. 
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The calculation of chroma features depends on several key parameters that impact accuracy and resolution. The 
window size (𝑛_𝑓𝑓𝑡) determines the number of samples analyzed per STFT frame, with a default value of 2048 
samples, balancing frequency resolution and temporal precision to effectively capture harmonic content [31]. The 
window function reduces spectral leakage, and the Hamming window is commonly used for its smooth roll-off 
and minimal side lobes, ensuring clean frequency representation [26]. The overlap (ℎ𝑜𝑝_𝑙𝑒𝑛𝑔𝑡ℎ) controls how 
much consecutive STFT frames overlap, with a default of 512 samples (75% overlap for a 2048 sample window), 
allowing chroma features to be computed approximately every 23 milliseconds at a 22.05 kHz sampling rate. This 
high overlap ensures a smooth transition between frames and effectively captures melody variations. The overlap 
between consecutive windows is calculated as 

Overlap = 𝑛_𝑓𝑓𝑡 − hop_length = 2048 − 512 = 1536 samples               (2) 

Together, these parameters optimize the extraction of chroma features, allowing the system to capture pitch-class 
distributions across time with a balance of frequency and temporal resolution[11]. This is essential for accurately 
representing the harmonic and melodic elements in music, particularly for tasks like QbH. We typically use the 
magnitude spectrum (ignoring the phase information) to focus on the energy in each frequency bin. The magnitude 
of the STFT at time t and frequency bin f is: 

𝑀(𝑡, 𝑓) = |𝑋(𝑡, 𝑓)|                                 (3) 
 

  This represents the intensity of the signal at a particular frequency at time t [27]. 

 C. Mapping to Pitch Classes 

After obtaining the frequency-domain representation through the magnitude spectrum, the next step is to map the 
frequency bins to pitch classes—the 12 notes of the chromatic scale. The chromatic scale consists of the 
following pitch classes C, C#, D, D#, E, F, F#, G, G#, A, A#, B. To perform this mapping, we determine which 
frequency bin corresponds to which pitch class. For example, frequencies between 𝐶4 (261.63 𝐻𝑧) and 
𝐶#4 (277.18 𝐻𝑧) are assigned to pitch class C, while those between 𝐶#4 and 𝐷4 (293.66 𝐻𝑧) belong to pitch 
class 𝐶#. This process groups spectral energy into perceptually relevant categories, allowing us to abstract melodic 
content across octaves [32]. 

We adopt the Equal Temperament Scale, the standard tuning system in Western music, in which each octave is 
divided into 12 equal semitone steps. Under this tuning system, the pitch class of a given frequency 𝑓 is computed 
as: 

Pitch Class Index = ቔ12 ⋅ 𝑙𝑜𝑔ଶ ቀ
௙

௙బ
ቁቕ 𝑚𝑜𝑑 12          (4) 

where 𝑓଴ = 440 Hz  is the reference frequency (A4 in the standard tuning), f is the frequency of interest, the 
logarithmic term determines the number of semitones between f and f0 and the result is then taken modulo 12 to 
assign the frequency to one of the 12 pitch classes [3]. 

Once frequency bins are mapped to their respective pitch classes, we aggregate the magnitude spectrum values 
across all frequency bins belonging to each class. Let 𝑀(𝑡, 𝑓)denote the magnitude of the STFT at time 𝑡 and 
frequency 𝑓. The total energy 𝑃௜(𝑡) for pitch class 𝑖 at time 𝑡 is calculated as: 

𝑃௜(𝑡) = ∑ 𝑀(𝑡, 𝑓)௙∈Pitch Class ௜                           (5) 

This results in a 12-dimensional chroma vector  𝐶(𝑡) for each time frame 𝑡 : 

𝐶(𝑡) = [𝑃ଵ(𝑡), 𝑃ଶ(𝑡), … , 𝑃ଵଶ(𝑡)]                     (6) 

here, C(t) is the chroma feature vector for the frame at time t and Pi(t) is the energy of pitch class i at time t. 

This representation is invariant to octave and robust to timbral variations, making it particularly suitable for tasks 
like Query-by-Humming (QbH) and music retrieval [33][34]. Repeating the process across all frames yields a 
chroma feature matrix 𝐶 ∈ 𝑅𝟙𝟚×ே, where 𝑁 is the number of time frames: 

𝐶 = [𝐶ଵ, 𝐶ଶ, … , 𝐶ଵଶ]                                (7) 

Where each Ci is a 12-dimensional chroma feature vector for frame i.  
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To better illustrate the effectiveness of chroma-based features, we used t-distributed Stochastic Neighbor 
Embedding (t-SNE) to project high-dimensional chroma features into a 2D space for visualization [35]. Figure 2 
displays this projection for both the main audio and the query humming, highlighting the clustering of 
semantically similar melodic content. This confirms the discriminative power of chroma features for melodic 
similarity in QbH systems. 

 

Figure 2. Chroma feature representation of the main audio and query humming 

 

D. Feature Indexing Using HDF5 Storage 

To facilitate fast and scalable retrieval, the extracted chroma features are indexed using the Hierarchical Data 
Format version 5 (HDF5), a widely adopted file format and data model optimized for storing and managing large, 
complex datasets [9][36]. HDF5 enables the efficient storage and organization of multi-dimensional arrays, such 
as chroma feature matrices, along with associated metadata in a hierarchical structure, supporting rapid access 
and high I/O performance [10]. 

In the proposed system, each song's chroma feature matrix is stored as a separate dataset within the HDF5 file, 
while additional metadata—such as song ID, artist name, duration, and feature dimensions—is included as 
attributes or within a metadata table to enable efficient lookups and filtering. HDF5’s compression capabilities 
further enhance storage efficiency without compromising retrieval speed, making it particularly well-suited for 
large-scale music databases [37]. 

This approach significantly reduces query processing latency by avoiding redundant feature extraction at runtime, 
as the features are precomputed and indexed. As a result, it supports real-time or near-real-time music retrieval, 
which is critical in Query-by-Humming (QbH) and content-based audio search applications [3]. 

E. Generating Humming Queries Synthetically 

To simulate realistic human humming for Query-by-Humming (QbH) experiments, we employed a synthetic 
humming generation process inspired by signal processing techniques commonly used in music information 
retrieval research. Each audio file was first segmented into 10-second fragments and then passed through a low-
pass Butterworth filter to attenuate high-frequency components, thereby mimicking the limited bandwidth of 
human humming [38]. 

To further enhance the realism and variability of the synthetic queries, additive Gaussian noise was introduced 
at six different signal-to-noise ratio (SNR) levels, which is a widely accepted method for simulating 
environmental and recording variability in audio datasets [39][26]. A total of 508 audio files were used in this 
process, producing 12,492 synthetic queries per noise level, and resulting in a cumulative total of 74,952 
synthetic humming samples across all six noise settings. 

These queries were then processed through the same chroma feature extraction pipeline as used for the indexed 
full-length songs, ensuring consistency in representation. The resulting feature matrices were temporarily stored 
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in memory for efficient similarity matching and retrieval, enabling robust evaluation under varied noise 
conditions [3]. 

F. Similarity Matching Using Fast Dynamic Time  Warping 

To match humming queries with indexed song features, we utilize Fast Dynamic Time Warping (FastDTW), a 
time-series alignment algorithm that effectively measures the similarity between two temporal sequences. The 
core idea behind Dynamic Time Warping (DTW) is to compute an optimal alignment between two sequences—
𝑄 (query chroma features) and 𝑅 (reference song chroma features)—by minimizing the cumulative distance 
between their corresponding feature vectors [11]. The DTW distance D(Q, R) is calculated as 

𝐷(𝑄, 𝑅) = 𝑚𝑖𝑛 ∑ |ே
௜ୀଵ 𝑄(𝑖) − 𝑅(𝑗)|                   (8) 

where  N denotes the sequence length and |. |  represents the Euclidean distance between chroma vectors at time 
step 𝑖 and 𝑗. However, the traditional DTW algorithm incurs a quadratic time complexity of 𝑂(𝑁ଶ), making it 
computationally prohibitive for large-scale music datasets [14]. 

To address this limitation, we employ FastDTW—an approximation algorithm that dramatically reduces the 
complexity to 𝒪(𝑁) through a hierarchical multiresolution approach [12]. FastDTW works by initially computing 
DTW on coarsely down-sampled versions of the input sequences and then iteratively refining the alignment at 
increasingly higher resolutions. This coarse-to-fine strategy enables substantial performance gains while retaining 
alignment accuracy. 
 
Furthermore, FastDTW leverages a sliding window constraint to limit the warping path, significantly reducing 
unnecessary computations. The final complexity of FastDTW is approximately: 𝒪(𝑁 ⋅ 𝑀/𝑟)where 𝑁 and 𝑀 are 
the lengths of the query and reference sequences, and 𝑟 is the reduction factor used during multiresolution 
approximation. This method is well-suited for real-time or near-real-time QbH retrieval systems, where large 
audio collections must be searched efficiently. 
 
Figure 3 illustrates the DTW alignment path between a humming query and a corresponding song, highlighting 
the temporal elasticity that allows the system to match similar harmonic progressions, even in the presence of 
timing variations. 

 
Figure 3. DTW tracking path of main audio vs. humming query 

 
G. Ranked Retrieval and Output Display 

 
After computing similarity scores between the query and each indexed song using FastDTW, the results are ranked 
based on their DTW distances, with lower distances indicating higher similarity. The system organizes the 
retrieved songs in ascending order of their distance values, thereby ensuring that the most acoustically similar 
matches are presented at the top of the list [11]. 
 
To enhance the relevance and precision of the retrieval, a 𝑡𝑜𝑝 − 𝐾 ranking strategy is employed, where only the 
top 𝐾 songs with the smallest DTW distances are selected for display. This approach aligns with common 
practices in information retrieval, where relevance is often measured using proximity-based metrics and results 
are limited to a manageable subset for practical user review [40]. 
 
Additionally, a threshold-based filtering mechanism is implemented to discard songs that exceed a predefined 
DTW distance threshold. This helps prevent spurious matches and ensures that only those songs that are 
sufficiently similar to the query according to a tunable distance margin are shown. Such hybrid ranking and 
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filtering techniques are especially useful in Query-by-Humming (QbH) systems, where ambiguous or noisy input 
may otherwise lead to misleading results [1]. 
 
The final ranked list is then displayed in the system’s GUI, allowing users to play, inspect, and validate the 
retrieved results. 
 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION  

 
This section presents the experimental setup, evaluation metrics, and performance analysis of the CBMIR system 
for Indian light music. The system was implemented in Python using the PyCharm IDE and tested on a dataset of 
508 mp3 songs, each with an average duration of 4 minutes.  

A.   Experimental Setup 

The performance of the proposed query-by-humming (QbH) system was evaluated through a structured 
experimental pipeline. A dataset comprising 508 MP3 songs was first preprocessed, during which chroma features 
were extracted using the Librosa library [27] and stored in HDF5 format to enable fast and scalable retrieval 
[9][10][36]. Two distinct types of queries were considered to assess the system’s robustness: Type 1: A randomly 
selected 10-second audio excerpt from any part of the original songs. Type 2: Synthetic humming queries, 
generated using low-pass filtering and Gaussian noise injection to simulate natural humming characteristics at six 
different noise levels. From a total of 12,492 synthetic samples per noise level, 20 samples were randomly selected 
for evaluation at each level. To compute the similarity between queries and indexed audio, Fast Dynamic Time 
Warping (FastDTW) was used as the distance measure [12]. Performance was quantitatively assessed using the 
following metrics: Mean Retrieval Time: To evaluate system speed. DTW Distance: To assess the alignment cost. 
Mean Reciprocal Rank (MRR): To measure the rank position of the correct match. Song Matching Accuracy: 
Defined as the percentage of queries for which the correct song was retrieved within the top-k results. These 
metrics collectively offered insights into both retrieval effectiveness and computational efficiency of the system 
under varying input conditions. 

B. Retrieval Performance Analysis 

The retrieval performance of the system was assessed by analyzing both retrieval time and accuracy for the two 
types of queries. When a randomly selected 10-second excerpt from one of the 508 main audio files was used as 
the query, the system successfully retrieved the correct song at the top-1 position, achieving a mean retrieval time 
of 13.34 seconds, as shown in Table 1. This demonstrates that the system is capable of efficiently retrieving the 
exact match for short query segments, consistent with the findings in previous work on content-based audio 
retrieval [41]. 

Dataset Size DTW Distance 
Mean Retrieval 
Time (s) 

100 654.14 2.07 

200 1054.7 3.97 

300 1165.64 5.88 

400 1082.04 7.98 

508 1152.93 13.34 

 
Table 1. Retrieval Time and Distance for 10-Second  

  Queries 
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In contrast, when synthetically generated humming queries were used, the system's retrieval time remained 
consistent, but the top-k retrieval performance fluctuated due to variations in the humming duration, silence 
segments, and background noise. These results indicate that the system is robust to minor variations in melody, 
which is essential for real-world Query-by-Humming (QbH) applications where query quality can vary [42]. 

The Mean Reciprocal Rank (MRR) is a key metric used to evaluate the effectiveness of a retrieval system. It 
quantifies how quickly a relevant result appears in the ranked list of retrieved items. The Reciprocal Rank (RR) 
for a query is defined as the inverse of the rank at which the first relevant result is retrieved: 

RR(𝑞) =
ଵ

rank of first relevant for query ௤
                (9) 

Where  
               If the first relevant result is at rank r, then 

RR(𝑞) =
ଵ

௥
                                       (10) 

If no relevant result is found, then RR(q)=0 

 

MRR is the average of the reciprocal ranks across all queries. 

𝑀𝑅𝑅 =
ଵ

|ொ|
∑ RR(𝑞)|ொ|

௤ୀଵ                             (11) 

where ∣Q∣ is the total number of queries. The accuracy and MRR for synthetically generated humming queries of 
varying noise levels are presented in Figure 4 and Figure 5. 

 
Figure 4. Impact of Noise Levels on MRR 

 

 

Figure 5.  Impact of Noise Level on Accuracy 
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These results highlight the effectiveness of the system in retrieving the correct songs from noisy and imperfect 
queries, demonstrating its robustness in a real-world environment [43]. 

C. Accuracy and Scalability Considerations 

The system achieved 100% retrieval accuracy, consistently retrieving the correct song at the top-1 position when 
the query was an exact audio excerpt from the song. This result emphasizes the importance of accurate feature 
extraction and indexing for exact match retrieval, as highlighted by previous research [41]. However, when 
synthetically generated humming melody queries were tested, the top-K retrieval performance varied depending 
on the noise level present in the input query, demonstrating the challenges of noisy input in real-world Query-by-
Humming (QbH) systems [42]. 

When tested against a full-length dataset of 508 MP3 songs, the system maintained a mean retrieval time of 13.34 
seconds, showcasing the efficiency of HDF5 indexing in optimizing both feature storage and access speed [9]. 
This retrieval time is in line with expected performance for moderate-sized datasets. However, while the system 
operates efficiently for this size, larger datasets may necessitate further optimizations, such as approximate nearest 
neighbor search methods [44], to ensure scalability and maintain fast retrieval times. 

D. Comparison with Traditional Approaches 

The proposed method was evaluated against traditional DTW-based QBH systems, which typically do not utilize 
HDF5 for indexing, as well as the LSH with FastDTW approach. For a fair comparison, multi-threading was 
incorporated into the traditional DTW-based system only during the similarity measurement phase (search time) 
to improve efficiency, as suggested by previous studies [45]. The system was tested on a dataset of 100 MP3 
songs, as processing larger datasets required significantly more time to complete, which aligns with common 
challenges in large-scale audio retrieval systems [46] The comparison results are summarized in Table 2. The 
HDF5-based feature storage and FastDTW implementation reduced the mean retrieval time by nearly 96.68% 
compared to the standard DTW, while maintaining high accuracy, as demonstrated in earlier work on efficient 
audio retrieval methods [47]. Additionally, it achieved a 99.73% reduction in mean retrieval time compared to the 
LSH with FastDTW approach, which aligns with findings on the efficiency of HDF5 indexing and DTW 
optimizations [44]. 

Method 
Indexing 
Method 

Mean Retrieval 
Time (s) 

Traditional 
DTW  

No Indexing 1398.79 

FastDTW LSH 115.21 

Proposed 
Method 

HDF5 + Fast 
DTW 

2.07 

 

Table 2.  Comparison of Results Based on Retrieval Performance Metrics 

V. CONCLUSION AND FUTURE WORK 

 A. Conclusion 

This paper presented a Content-Based Music Information Retrieval (CBMIR) system using Query-by-Humming 
(QbH) for Indian light music. The system extracts chroma features to represent melody and stores them efficiently 
in HDF5 format for fast retrieval, a widely adopted method for efficient data storage in music retrieval systems 
[47]. Similarity matching is performed using FastDTW to align melodic sequences and identify the most similar 
song, an optimized variant of Dynamic Time Warping (DTW) that improves computational efficiency [11]. 

The experimental results highlight the effectiveness of the proposed approach. When tested with 100 MP3 songs, 
the system successfully retrieved the correct song at the top-1 position with a mean retrieval time of 2.07 seconds 
for a 10-second original audio excerpt selected randomly from any part of the song. For synthetically generated 
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humming melody queries with varying noise levels, the top-K retrieval varied depending on the noise level present 
in the humming. The use of HDF5 indexing significantly enhanced retrieval speed compared to traditional DTW-
based methods [11] and achieved faster retrieval than the LSH with FastDTW approach [46]. Additionally, the 
system performed efficiently with a moderate dataset of 508 songs, demonstrating its potential scalability for 
larger music collections. These results confirm that chroma feature-based indexing combined with FastDTW is a 
suitable approach for melody-based music retrieval, making the system effective for QbH applications in Indian 
light music. 

B. Future Work 

While the current system provides accurate and efficient music retrieval, several enhancements can be explored. 
Future improvements to the system can enhance its performance and scalability. Handling noisy and imperfect 
humming can be addressed by incorporating machine learning-based melody enhancement or pitch correction 
techniques (Yin et al., 2017) to improve retrieval accuracy for real-world queries. Scalability for larger datasets 
can be achieved by integrating approximate nearest neighbor (ANN) search (Norouzi et al., 2013) for faster 
similarity matching and implementing parallelized FastDTW to further reduce retrieval time (Salvador & Chan, 
2007). Enhancing feature representation through deep learning-based embeddings (e.g., CNNs or RNNs) could 
improve melody representation beyond traditional chroma features, as demonstrated in various audio retrieval 
systems (Choi et al., 2017). Expanding the music dataset by testing on a diverse collection covering various styles 
of Indian music (e.g., classical, semi-classical, folk) will help assess generalizability. Lastly, deploying the system 
as a web or mobile application with a cloud-based architecture (Yuan et al., 2019) and a user-friendly interface 
would allow real-time voice-based song search for users. By addressing these areas, the system can evolve into a 
highly scalable and robust QbH-based music retrieval platform, benefiting researchers and music enthusiasts alike. 
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