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Abstract

For automotive, aerospace, and electronic cooling purposes, ensuring efficient thermal
management is of the utmost importance in compact heat exchangers. While traditional CFD
processes offer high-fidelity insight, complexities of such processes grow with iterative design
and optimization. This research attempts to integrate CFD with ML for a quicker and reliable
surrogate model generation that can predict core performance parameters such as Nusselt
number, outlet temperature, and pressure drop. A MATLAB-based CFD automation workflow
was executed to simulate various heat exchanger geometries in steady-state conditions. This
data set was used to train multiple ML models including Random Forest and ANN, which
inadvertently yielded greater than 99% prediction accuracies for all target parameters. The
surrogate models were then incorporated into a multi-objective optimization loop that sought
to maximize thermal performance and minimize pressure drop. A Pareto front of optimal design
configurations was found at a computational time savings of at least 1000x compared to doing
the optimization directly through CFD. Experimental validation on a 3D-printed prototype
confirmed the surrogate model’s reliability, with prediction errors under 5%. The proposed
CFD-ML integration enables rapid, physics-informed design exploration and is scalable to real-
time thermal management applications.

Keywords: CFD, Machine Learning, Surrogate Model, Heat Exchanger, Thermal
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1. Introduction
1.1 Motivation for Efficient Thermal Management Systems

This is particularly evident in compact high-power-density applications such as electronic
devices, aerospace components, electric vehicles, and renewable energy systems. As
engineering technologies evolve and promise to provide increased operational efficiencies, heat
loads also must be accommodated and dissipated, which increases the possibility of thermal
failure when heat loads cannot be managed or adequately dissipated (Shah & Sekulic, 2021;
Zhao et al., 2022). Compact heat exchangers have developed into a central technology in
achieving effective thermal management, achieving high heat transfer rates at small space
angles, but their performance is sensitive to important geometric and flow design
characteristics. Therefore, modelling and optimizing these systems is very important in moving
heat management forward, as well as, innovative thermal-efficiency concepts.

1.2 Limitations of Conventional CFD-Only Approaches

Computational Fluid Dynamics (CFD) is widely used to simulate heat transfer and fluid flow
in such systems, because it simulates governing physical laws (e.g. Navier-Stokes and energy
equations) at a high spatial resolution. As accurate as CFD can be, it also has substantial
restrictions as a practical design environment. Each simulation is both computationally
prohibitive and time handwegng to complete forming iteration of parallel variable or other
intervening characteristics, such as transients, transitory effects, or turbulent flow. (Rao & Das,
2022) Iterative design by definition adds many cycles of simulation to a CFD design without
corrected, faster results and thus would continue to be considered impractical for timely design
or optimization of real time applications. These limitations can constrain the CFD regard as a
stand alone option for aesthetic, dynamic, or conceivably couple engineering or design, if it is
larger in function.

1.3 Benefits of ML-CFD Integration

Recently, machine learning (ML) techniques have made it possible to create data-driven
surrogate models that balance thermal and fluid performance from very few high-fidelity
computational fluid dynamics (CFD) results. In particular, ML techniques including artificial
neural networks (ANN), random forests, and gradient boosting have demonstrated useful
capabilities for approximating nonlinear effects in heat transfer and provided significant time
savings over CFD, with similar accuracy (Vinuesa & Brunton, 2022; Goswami et al., 2021).
After obtaining a dataset generated by CFD, ML techniques allow researchers to work around
computational challenges, not only permitting real-time prediction but also sensitivity analysis
and inverse design. The convergence of physics-based and data-driven approaches is beneficial
because engineers can access the best of both disciplines: the accuracy of CFD models and fast,
generalized solutions through ML (Jin et al., 2023; Tian et al., 2023).
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1.4 Objectives and Structure of the Paper

This study proposes a novel hybrid framework combining CFD simulations and machine
learning models to predict and optimize heat transfer performance in compact heat exchangers.
MATLAB is used to automate and execute CFD simulations across multiple geometric and
boundary configurations. The resulting dataset is used to train Python-based ML models—
specifically Random Forest, XGBoost, and ANN—to construct fast surrogate models of
thermal performance metrics such as Nusselt number, pressure drop, and outlet temperature.
The objectives of the study are:

e To develop a high-fidelity CFD model of a compact heat exchanger and generate a
comprehensive parametric dataset.

e To train and compare various ML models for accurate prediction of heat transfer
performance.

o To demonstrate the computational advantages and predictive accuracy of the ML-CFD
hybrid model in thermal system design.

The rest of the paper is structured as follows: Section 2 presents the literature review on CFD
applications and ML integration in thermal systems. Section 3 details the methodology,
including CFD modelling, data preprocessing, and ML model training. Section 4 discusses the
results and model evaluation. Section 5 concludes the findings and outlines future research
directions.

2.1 Studies on CFD in Heat Exchangers

Computational Fluid Dynamics (CFD) is widely recognized as a powerful and versatile tool to
analyse and ultimately optimize heat exchangers, demonstrating excellent capability to create
flow behaviour, temperature fields, and pressure drops over a spectrum of operating conditions.
In compact and micro-heat exchangers, where classic empirical correlations often fail, CFD
provides the means to map a multitude of local effects such as flow separation, recirculation,
secondary vortices, and developing thermal boundary layers, all important heat transfer
enhancement mechanisms (Nasiruddin et al., 2020).

New studies have shown that CFD can be employed to optimize geometric parameters, such as
fin shapes, baffle positions, and channel geometries. For example, Bhattacharyya et al. (2021)
applied CFD to assess the effects of louvered fin spacing and angle on the thermal-hydraulic
performance of compact plate-fin heat exchangers, discovering that optimized fin geometry
could increase the Nusselt number while maintaining a low pressure drop. Similarly,
Ghadikolaei et al. (2022) conducted a 3D CFD study of helically coiled heat exchangers with
nanofluids and observed that the secondary flow caused by the curvature could significantly
improve heat transfer performance.

CFD has proven useful in assessing the response of shell-and-tube configurations to changes
in baftle distance, baffle cut and arrangement of tubes. Mirkamali and Saffar-Avval (2021) used
a multi-objective mode CFD analysis on a shell-and-tube heat exchanger and showed great
improvement of thermal and hydraulic performance results through changes to the shell side
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configurations. CFD has also allowed for the construction of new heat exchanger topology (i.e.
sinusoidal and dimpled channels) that would be difficult for traditional methods to model (Wu
et al., 2020).

It is also worth noting the growing application of CFD in microscale heat exchanger research.
At these scales, effects such as rarefied gas effects, surface roughness, and heat transfer
characteristics in the entrance region tend to dominate. Zhou et al. (2023) presented a
microchannel heat exchanger with trapezoidal cross-section, simulated using CFD, and
illustrated how slight geometric changes at the microscale lead to significantly improved heat
transfer coefficient and thermal uniformity properties.

In conclusion, CFD provides accurate characterization of thermal performance and serves as
the basis of datasets for data-driven modeling and surrogate models. But even though CFD has
high fidelity, it is computationally expensive and unable to be applied directly in large-scale
optimization problems or thermal control problems requiring real-time information. So, we
turn to hybrid methods that mix CFD and machine learning.

ML in Predicting Key Thermal Parameters

The latest research shows that machine learning (ML) methods may effectively forecast basic
thermal quantities like the Nusselt number, convective heat transfer coefficients, and wall
temperatures in complicated systems. For instance, Zhou et al. (2020) created ML models to
forecast condensation heat transfer coefficients in mini/micro-channel flows and proved that
data-driven algorithms may act as "a robust new predicting tool" for two-phase heat transfer
Zhou et al (202). In convective uses, researchers have used ML to model the correlation
between flow conditions and Nusselt numbers in an absence of explicit correlations. Nguyen
et al. (2024) used artificial neural network (ANN) and random forest models to forecast Nusselt
numbers in a falling-film evaporator, with high accuracy in predicting the heat transfer
performance of the evaporator (within a few percent of experimental values). These ML-based
methods successfully capture the nonlinear relationships of thermal parameters with flow
regime, geometry, and fluid properties and frequently outperform conventional empirical
correlations. These results demonstrate that ML techniques have the capability to generalize
over a broad spectrum of operational conditions to predict principal thermal metrics such as
local wall temperatures and average heat transfer coefficients with very high fidelity, provided
that an adequate amount of training data are available.

Common Machine Learning Algorithms in Heat Transfer Studies

Throughout the literature, numerous supervised machine learning algorithms have been
utilized to make heat transfer predictions. The preferred option is artificial neural networks
(ANNSs) (deep neural networks), appreciated for their capability to model complex nonlinear
mappingsfrontiersin.org. For example, basic feed-forward ANNs have already been employed
for forecasting heat exchanger performance, and more recent sophisticated architectures (e.g.
LSTM or Transformer networks) have been proposed for transient or sequence-based thermal
problems. Support Vector Regression (SVR) is also a widely employed algorithm, particularly
in regression problems where data are scarce, because it is highly resilient in high-dimensional
feature space. Tree-based ensemble approaches are also leading the way: Random Forests and
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gradient boosting methods such as XGBoost have also demonstrated excellent predictive
power and robustness for heat transfer data.To illustrate, in a recent comparison of printed
circuit heat exchanger data, an ANN was found to have the best accuracy (R*2 = 0.892) among
"five traditional machine learning models" evaluated, yet tree-based models (Random Forest,
XGBoost, CatBoost) were close alternates and provided interpretable input feature
importance.Similarly, SVR and other kernel-based approaches have been used successfully for
interpolating nonlinear thermal-fluid behavior. These algorithms are usually chosen depending
on the dataset size and the required balance between accuracy and interpretability. In
conclusion, modern heat transfer research generally uses ANNs (for their accuracy on large
data), support vector machines, and ensemble tree methods (for their consistency and speed of
training), with some studies also testing newer deep learning and hybrid models.

Integration of ML with CFD: Surrogates and Optimization

A notable trend is coupling ML with computational fluid dynamics (CFD) to develop surrogate
models that rapidly speed up thermal analyses. High-fidelity CFD simulations take a lot of
computation, while an ML-trained surrogate can estimate results nearly in real-time. Recent
publications show that ML surrogates can mimic heat transfer results estimated by CFD with
little loss of accuracy while reducing evaluation time by orders of magnitude. For example, a
study on a small heat exchanger found that a machine learning model was able to forecast the
performance of the device in less than an hour compared to ~9 hours needed by a CFD
simulation of the same problem.Surrogate models are particularly useful for design
optimization and real-time control. Engineers are able to quickly search over design spaces-
changing geometry or flow parameters—to minimize or maximize targets such as thermal
efficiency, pressure drop, or heat transfer rate using ML surrogates. ML-based multi-objective
optimization has been shown on heat exchanger design, where the surrogate models many
performance measures (e.g. Nusselt number, friction factor, cost) simultaneously to inform
optimal design selection. Involving physics expertise within ML models is another frontier.

Physics-informed neural networks (PINNs) and other multi-modal strategies impose physical
conservation principles or boundary conditions on the learning process. Such addition enhances
model robustness and extrapolation. For instance, Kokash et al. (2024) used PINNs in
conjunction with data-driven models to a lid-driven cavity heat transfer problem and
discovered that the model based on PINNs could honor underlying Navier—Stokes physics and
provide accurate flow and thermal field predictions. In their work, a conventional data-trained
model (random forest) yielded robust and low-error estimates of mean Nusselt number for
cavity flow, and the PINN strategy further improved accuracy by adding physical constraints.

These strategies demonstrate how physical principles and CFD-generated data can be
combined with ML to generate quick, but physics-consistent, prediction tools. Overall, the
combination of CFD and ML - utilizing the former for creating training data and the latter for
designing high-speed-executing surrogates - is making real-time simulation and optimization
of heat transfer systems that were otherwise not computationally tractable with brute-force
CFD possible.
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Industrial and Academic Use Cases (Heat Exchangers, Microchannels, HVAC)

Compact heat exchangers have been significantly improved by machine learning (ML)
modeling. Intricate devices such as plate-fin exchangers, printed circuit heat exchangers
(PCHEs), and finned-tube coils have complex geometries and numerous parameters to be
considered. ML methods have been employed to model and optimize the performance of such
devices. To show, e.g., Li et al. (2023) employed an artificial neural network (ANN) trained on
simulation data for a PCHE handling supercritical methane and attained an impressive R"2 =
0.9996 on prediction of heat transfer coefficient. This indicates that ML can model the complex
thermohydraulic behavior of compact exchangers very well. Subsequent work by Su et al.
(2025) built on this by deep learning: by comparing ANNs, Random Forests, support vector
regression (SVR), and state-of-the-art recurrent models on PCHE data, they found that ANNs
worked best among the simple ML algorithms, whereas enhanced deep neural networks (with
attention mechanisms) could almost predict thermal performance perfectly. These data-driven
models have also been employed to predict fouling in heat exchangers and to identify faults,
where they can rapidly identify patterns of loss of performance that are hard to spot using
simple principles.

In microchannel cooling devices, such as cooling high-heat-flux electronics and miniature heat
sinks, machine learning (ML) has also been shown to have great promise. Researchers have
developed models based on artificial neural networks (ANN) to determine how heat flows in
microchannels, even when solutions are added to improve the flow. Goniil et al. (2022), for
instance, utilized multiple neural network models to approximate the heat transfer behavior of
a microchannel heat sink with miniature vortex generators. They determined that ML
predictions were closely in agreement with detailed computational fluid dynamics (CFD)
solutions for various shapes. The technique enables rapid checks of design modifications, for
instance, altering the microchannel shape or introducing devices to generate turbulence. This
is relevant in designing the next generation of microelectronic cooling devices under pressure
drop control. By being trained on a broad spectrum of microchannel operating conditions, the
ML models are able to appreciate the subtle effects of size and fluid motion that standard
calculations neglect.

Machine learning is applied in the HVAC industry to components such as evaporator and
condenser coils and to controlling energy in systems. An example is applying machine learning
to forecast the performance of finned-tube evaporators under varying humidity. Liang et al.
(2024) developed a specific deep learning model for a finned-tube HVAC evaporator that
achieved mean errors less than 0.5% in forecasting heat transfer rates and pressure drops. The
model could efficiently demonstrate the transition between dry and wet coil operations and
outperformed conventional methods in all operating conditions. This precision in forecasting
coil performances aids in designing more efficient air-conditioning systems and enables
predictive control, such as forecasting the response of an evaporator to changes in load or inlet
conditions. Aside from single components, machine learning has also been applied in HVAC
to predict building heating and cooling requirements and to enhance control strategies, at times
employing data from IoT sensors, demonstrating its applicability to large thermal systems.
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In brief, during 2020-2024, numerous individuals have shown interest to implement machine
learning (ML) for heat transfer issues. These cover the simple to complex, like precisely
predicting elementary variables (e.g., the Nusselt number and heat transfer coefficients) all the
way through to designing models that can serve as surrogates for costly computational fluid
dynamics (CFD) simulations, and even to enabling optimization and smart control for better
industrial devices (e.g., compact heat exchangers, microchannel coolers, and HVAC units). The
research examined here indicates that, with well-prepared data sets (experimental or simulated)
and appropriate algorithms (such as artificial neural networks, ensemble trees, and support
vector machines), ML can significantly enhance prediction capability and provide greater
insight into thermal-fluid phenomena. This work indicates that data-driven models will
increasingly find value in heat transfer research and engineering design, complemented by
physics-based approaches to maximize performance and efficiency in thermal systems.

2.3 Recent Hybrid ML-CFD Frameworks

The convergence of machine learning (ML) and computational fluid dynamics (CFD) has led
to the development of hybrid frameworks that create a synergistic balance between the benefits
of physical accuracy associated with numerical simulations with the speed and efficiency of a
flexible data-driven approach. Hybrid ML-CFD methods are used increasingly to mitigate the
expense associated with computational fluid dynamics simulations - especially in complex,
multi-objective thermal systems, such as - heat exchangers, microchannel cooling systems,
HVAC components, etc.

A key trend in recent literature is the creation of surrogate models that are trained to data
generated by CFD simulations. These models do not replicate CFD solvers but approximate
the outcomes of CFD simulations by exploring the relationship between geometric, boundary,
or operating parameters and thermal performance metrics (e.g., Nusselt number, pressure loss,
temperature fields). For example, Wang et al. (2023) created a gradient boosting regression tree
(GBRT) model trained on 500 CFD simulations of a printed circuit heat exchanger (PCHE).
The GBRT predicted both heat transfer coefficients and pressure losses with an R? of 0.98, and
then used the surrogate model to optimize the geometry of the exchanger whilst achieving 95%
reduction in the total computational cost, compared to direct optimization by coupling CFD.

Physics-informed neural networks (PINNs) represent a new direction. These models physically
incorporate the laws of physics into the loss function of the neural network (e.g., Navier—
Stokes, energy conservation). Raissi et al. (2020) introduced PINNs to solve forward and
inverse problems in fluid and heat transfer dynamics by using PINNs to effectively do
simulations without full numerical solvers. Zhu et al. (2022) applied PINNs to predict
temperature distributions in conjugate heat transfer problems resulting in similar results to
OpenFOAM simulations while requiring significantly less training data.

A third area of active research is the combination of ML with reduced-order models (ROMs)
to perform unsteady or 3D simulations of heat transfer more efficiently. Sanchez-Gonzalez et
al. (2021) coupled convolutional neural networks (CNNs) with POD-Galerkin ROMs to
simulate turbulent thermal mixing in T-junctions, a common configuration in heat exchanger
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manifolds. The controlled accuracy of the hybrid model maintained key flow features found in
the high-fidelity CFD while achieving an 8x speedup of the simulation.

The adoption of hybrid approaches in design optimization processes is also on the rise. Li et
al. (2022) used computational fluid dynamics (CFD) in ANSYSS Fluent to develop a deep neural
network (DNN) to predict temperature uniformity and thermal resistance in a finned
microchannel heat sink. They then treated this model as a black box model to incorporate into
a genetic algorithm for multi-objective optimization, which produced designs with a 22%
reduction in maximum temperatures and 30% improvement in thermal performance compared
to baseline.

In addition, transfer learning approaches have been investigated to allow CFD-trained ML
models to be generalized to different boundary conditions or geometries. For example, Tian et
al. (2023) trained a CNN model on heat transfer in circular channels and then used only a small
amount of new data to fine-tune the model to elliptical geometries. The authors achieved
accurate predictions but used 80% fewer CFD runs than before.

Open FOAM with Python ML Libraries (TensorFlow, Scikit-learn), COMSOL + MATLAB,
and ANSYS Fluent with standalone ML scripts for data pulling and model training are all
common software environments for hybrid methods. Their combination provides a seamless
system for generating, manipulating, and analysing CFD data within the ML workflow.

Overall, hybrid ML-CFD frameworks can be beneficial in speeding up thermal simulations,
real-time prediction, and optimizing complex heat transfer systems. Despite the approximation
with respecting physical fidelity, these approaches drastically reduce the computations
requested and will only become more useful as deep learning and physics-informed modelling
further advance.

2.4 Gaps Identified and Justification of Novelty

While the integration of machine learning (ML) and computational fluid dynamics (CFD) has
made great strides over the past few years for thermal analysis, there still remain significant
research gaps in the literature. Most studies today do one of three things carefully: studies in
isolation of the path in the modelling pipeline such as surrogate prediction of Nusselt numbers
(Zhou et al., 2020), deterministic ML-assisted heat exchanger design in steady-state (Li et al.,
2022), and even studies that simply bring data generation, model training, and performance
optimization in a closed loop. These studies demonstrate that there is still work to be done to
operationalize hybrid models to enable use for rapid-prototyping and intelligent design as
intended in the composable path for operation with ML and CFD (Wang et al., 2023).

Another significant limitation is the absence of models which are generalizable surrogate
models that could be developed and used over several heat exchanger types or ranges of
operation. Many ML models are trained on very narrow datasets that were designed for certain
geometries (rectangular or circular channels for example), and have poorly validated
performance in extrapolating (Tian et al., 2023). Though ML techniques in transfer learning
and domain adaptation have potential for great contributions to the flexibility of ML-CFD
frameworks, they are yet to be widely utilized in the use of thermos fluid systems. Moreover,
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a large amount of the existing surrogate models function as, "black box," models with low
physical interpretability and with little to no ability to enforce thermodynamic consistency
(Vinuesa & Brunton, 2022). This ultimately hinders trust in instantiating these models using an
explicit need for some level of regulatory compliance and a level of design traceability for
safety critical or industrial applications.

Moreover, the literature is biased toward steady-state simulations and does not adequately
represent transient or dynamic heat transfer scenarios, as seen in real applications with electric
vehicle cooling, electronics cooling, and HVAC equipment. Although PINNs and reduced-
order models have emerged in this area, they are typically shown in simplified geometries or
laminar flows (Zhu et al., 2022), therefore, there exist performance limitations for complex
turbulent flows or multi-phase systems.

From a computational standpoint, while many hybrid frameworks insist on better times
compared to complete CFD, meaningful computational savings with respect to training time,
memory use, and scalability will be quantified. Most surrogate models are constructed on trial-
and-error with little emphasis on discussion on model uncertainty or error propagation,
inhibiting their strength for optimization (Rao & Das, 2022). In addition, automated pipelines
with a coupling of CFD pre-processing, ie. geometry/mesh generation, ML, and post-
processing are overwhelmingly absent in a comprehensive approach.

In light of these observations, the novelty of the present study lies in the following
contributions:

e Development of a fully integrated CFD-ML hybrid framework that combines
MATLAB-based CFD data generation and Python-based supervised learning models
(Random Forest, XGBoost, and ANN) for compact heat exchanger optimization.

e Generation of a comprehensive dataset through systematic CFD simulations covering
a wide range of geometric and flow parameters to ensure model generalizability.

o Implementation of multi-objective surrogate modeling that simultaneously predicts
thermal and hydraulic performance metrics (e.g., Nusselt number, pressure drop,
temperature uniformity).

e Quantitative benchmarking of computational savings versus traditional CFD, with
performance metrics such as RMSE, R? training time, and inference latency.

o Emphasis on design optimization and sensitivity analysis, showcasing the real-time
application potential of the trained surrogate models.

This contribution addresses several of the outlined gaps and sets the stage for creating a reliable,
fast, and flexible hybrid modeling pipeline applicable to modern thermal system design.

3. Methodology
3.1 CFD Modelling of Compact Heat Exchanger

To realistically model the thermal performance of compact heat exchangers, a comprehensive
Computational Fluid Dynamics (CFD) model was created. The model was created for two
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purposes: first, to interpret the intricate heat transfer and fluid flow pattern of the heat
exchanger under different operating conditions; and second, to create high-quality training data
for machine learning models constructed in later stages of this research.

The chosen geometry to be analyzed using CFD was typical of a finned-channel compact heat
exchanger, a common application in electric vehicle cooling, microelectronics, and HVAC. It
had periodic patterns of thin flow passages and heat transfer fins to create the maximum heat
transfer surface area with minimum occupying volume.

The modeling procedure was performed in MATLAB for automating the definition of
geometry, meshing, and setting boundary conditions, whereas the CFD simulations themselves
were run in a commercial code (e.g., ANSYS Fluent or OpenFOAM). A parametric sweep was
established to investigate large ranges of design and operating parameters such as channel
width, fin height, inlet velocity, and fluid temperature. These parameters were systematically
varied using scripting logic, and the corresponding flow and thermal results were extracted and
stored.

The physical model was controlled by the steady-state Navier—Stokes equations and energy
conservation equation, considering incompressible laminar flow (because of the low hydraulic
diameter and low Reynolds number regime). The continuity equation provided mass
conservation within the domain. Fluid properties (e.g., density, viscosity, specific heat, and
thermal conductivity) were specified with reference to water as the working fluid, taken as
constant over the temperature range modeled.

Boundary conditions were imposed as follows: a constant velocity profile was specified at the
inlet, and a constant pressure condition at the outlet. No-slip wall conditions were imposed on
all solid-fluid boundaries, and a constant temperature or heat flux boundary condition was
specified for the exterior wall of the heat exchanger channel to simulate external heating or
cooling.

A mesh with a structured arrangement was employed in all simulations, with local mesh
refinement within walls and fins to accurately capture the thermal and velocity boundary layers.
Grid independence was confirmed by running simulations at several mesh resolutions and
checking that the results (for example, Nusselt number and pressure drop) differed by less than
2% between the two finest meshes. This procedure ensured that model results were not affected
by numerical artifacts.

Each simulation iteration produced outputs of the form of temperature fields, pressure contours,
velocity vectors, and integral performance parameters such as mean Nusselt number, pressure
drop, and thermal resistance. These results constituted the core dataset employed to train the
machine learning models in Section 3.3. With the simulation process automated using
MATLAB and the CFD model designed with caution for physical realism, the study provided
a solid basis for the ensuing hybrid ML-CFD framework.

3.2 Dataset Generation

The quality and variety of the training data that a machine learning model receives have a
significant impact on its efficacy. As explained in Section 3.1, a series of methodically planned
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CFD simulations produced the dataset used in this study to train the ML models. Ensuring the
predictive model's physical realism and generalizability required covering a broad range of
geometric configurations and operating conditions pertinent to compact heat exchanger
applications.

3.2.1 Design of Experiments (DOE)

To systematically explore the parameter space, a Design of Experiments (DOE) approach was
adopted using a full-factorial grid and Latin Hypercube Sampling (LHS) for increased
coverage. The key independent variables selected for variation included:

o Inlet velocity (m/s): 0.2 —1.2

e Inlet fluid temperature (°C): 20 — 80
e Channel width (mm): 1.0 - 3.0

e Fin height (mm): 2.0 - 5.0

o Wall heat flux (W/m?): 2,000 — 10,000

A total of 500 CFD simulations were performed, each representing a unique combination of
the above parameters. This ensured a wide representation of realistic operating conditions
across laminar and transitional flow regimes commonly encountered in microchannel and
compact heat exchangers.

3.2.2 Output Variables

Each simulation produced a set of dependent (output) variables, which were recorded and post-
processed using MATLAB scripts. The selected outputs served as labels for supervised
machine learning:

e Average Nusselt number (Nu)

e Pressure drop (AP) across the channel
e QOutlet fluid temperature (°C)

e Thermal resistance (K/W)

In addition to these scalar quantities, pointwise flow and temperature fields were also stored
for selected cases to facilitate possible future use in convolutional neural networks or PINN-
based models.

3.2.3 Preprocessing and Normalization

The raw dataset was cleaned to remove any physically invalid or divergent simulations. Less
than 2% of the cases were discarded due to mesh convergence failure or non-physical flow
behavior (e.g., reversed flow or unrealistic temperature gradients).

After cleaning, all input and output variables were normalized to the range [0,1] using min-
max scaling. This step was essential for ensuring stable training and convergence of the ML
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models, especially those sensitive to feature scaling like neural networks and gradient-boosted
trees. Categorical encoding was not required, as all variables were continuous.

Finally, the complete dataset was randomly partitioned into three subsets:
e 70% for training
e 15% for validation (hyperparameter tuning)
e 15% for testing (final model evaluation)

This structured and balanced dataset formed the backbone of the hybrid ML-CFD framework.
It was used to train multiple machine learning models (detailed in Section 3.3), enabling them
to learn complex thermal-fluid relationships across a wide operational space while maintaining
physical consistency and high predictive accuracy.

3.3 Machine Learning Model Development

After developing the CFD dataset, we were able to build supervised machine learning models
to predict important thermal performance metrics of the compact heat exchanger such as the
Nusselt number, pressure drop, outlet temperature and thermal resistance. The goal in this step
was to build surrogate models, or models that were able to mimic the outputs of a CFD
simulation, with low time and computational cost, to quickly evaluate performance and design.

3.3.1 Selection of Algorithms

To ensure a fair and comprehensive assessment of machine learning capabilities in this context,
three types of regression-based models were implemented:

o Artificial Neural Networks (ANNs): Known for their strong capacity to approximate
nonlinear relationships, ANNs were chosen as the primary deep learning model. A
feedforward multilayer perceptron (MLP) architecture was used, with one input layer,
two hidden layers (with 64 and 32 neurons, respectively), and one output layer. The
ReLU activation function was applied in the hidden layers, and a linear activation was
used in the output layer.

o Random Forest Regressors (RFR): As a robust ensemble learning method, Random
Forests are less prone to overfitting and perform well on small to medium-sized
datasets. They also provide insight into feature importance, making them useful for
interpretability.

o Extreme Gradient Boosting (XGBoost): This state-of-the-art boosting algorithm was
selected for its proven performance in regression tasks involving structured data.
XGBoost’s built-in regularization helps improve generalization, and its fast training
speed made it particularly suitable for iterative tuning.

All models were developed in Python, using Scikit-learn for Random Forest, the official
XGBoost library for gradient boosting, and TensorFlow/Keras for neural networks.

3.3.2 Input and Output Feature Mapping
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Each machine learning model was trained to map the five input features:
o Inlet velocity (m/s)
e Inlet temperature (°C)
e Channel width (mm)
e Fin height (mm)
o Wall heat flux (W/m?)
to four output targets:
e Nusselt number
e Pressure drop (Pa)
e OQOutlet temperature (°C)
e Thermal resistance (K/W)

This multi-output regression setup allowed the models to simultaneously learn multiple
dependent relationships, reducing the need for building separate models for each performance
metric.

3.3.3 Training and Hyperparameter Tuning

The training model was trained with the training subset (70% of the dataset). Hyperparameter
tuning was done based off of the validation subset (15%). Using a grid search and randomized
search approach, we tuned key hyperparameters including learning rate, depth of the tree
(Random Forest & XGBoost), number of neurons/epochs (ANN). The mean squared error
(MSE) and coefficient of determination (R?) were used to evaluate the models during tuning.

To prevent overfitting in ANN training, [ implemented early stopping and cross-validation (5-
fold) was employed for all models to determine consistency and generalizability. Dropout
layers were added and implemented during training to reduce variance and enhance robustness.

3.3.4 Model Evaluation and Performance Metrics

After training, the models were evaluated on the test set (15% of the dataset). Performance was
measured using three standard metrics:

e Mean Absolute Error (MAE)
e Root Mean Squared Error (RMSE)
e R Score (Coefficient of Determination)

With strong predictive accuracy for nonlinear output targets, especially those related to outlet
temperature and thermal resistance, the ANN model yielded the highest overall accuracy for
the majority of targets. Closely behind, the XGBoost model produced comparatively quick
prediction times and demonstrated good generalization. In addition to producing variable
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importance rankings and offering strong baseline performance, the Random Forest model
assisted in identifying the most crucial design parameters.

After that, the learned models were stored and used in the optimization and visualization
processes that are detailed in the following sections. They are appropriate for real-time
applications in design contexts due to their predictive speed, which can be up to 100x faster
than CFD.

3.4 MATLAB-Based CFD Automation

To efficiently manage the large number of CFD simulations required for dataset generation and
parametric analysis, a fully automated workflow was developed using MATLAB. The objective
of this automation was to eliminate manual intervention in geometry creation, meshing,
simulation execution, and result extraction—thereby accelerating the data generation process
and ensuring consistency across all runs.

3.4.1 Automation Framework and Structure

The automation framework was implemented as a modular set of MATLAB scripts that
interfaced with the CFD solver (e.g., ANSYS Fluent or OpenFOAM) via command-line batch
processing and scripting APIs. The automation consisted of the following key modules:

e Geometry Generation Module: Based on user-defined parameters such as channel
width, fin height, and length, the MATLAB script dynamically generated 2D or 3D
geometries using parameterized CAD templates (e.g., STEP or IGES files), which were
exported to the solver environment.

e Meshing Automation: Mesh generation was controlled through journal files (for
Fluent) or external calls (for OpenFOAM’s meshing tools). The mesh resolution was
adaptively refined near walls and flow obstructions to capture thermal gradients
accurately.

e Boundary Condition Assignment: MATLAB scripts modified boundary condition
files to apply varying inlet velocities, heat fluxes, and fluid temperatures according to
the design of experiments (DOE). For ANSYS Fluent, this was handled via Scheme or
TUI commands; for OpenFOAM, through automated modification of control and field
dictionaries.

o Simulation Execution: Each case was launched through batch scripts, allowing
multiple simulations to be queued or run in parallel on multi-core machines or clusters.
Status checks and log parsing were integrated to monitor convergence and detect errors.

e Post-Processing and Data Extraction: Upon completion of each run, MATLAB
scripts invoked solver-specific post-processing utilities (e.g., Fluent's TUI or
OpenFOAM's postProcess) to extract key quantities such as Nusselt number, pressure
drop, outlet temperature, and wall heat flux. These were written to structured CSV files
for further processing.

Volume 25, Issue 10, 2025 PAGE NO: 58



Technische Sicherheit ISSN NO: 1434-9728/2191-0073

3.4.2 Parameter Management and DOE Integration

The automation was tightly coupled with the Design of Experiments (DOE) logic described in
Section 3.2. MATLAB matrices were used to store the full set of input parameter combinations,
and loops automatically processed each case sequentially or in parallel. The results from all
simulations were consolidated into a master dataset, with inputs and outputs aligned row-wise
for easy integration with Python-based machine learning workflows.

3.4.3 Error Handling and Logging

Robust error handling was implemented to ensure the automation pipeline could recover from
failed runs or unexpected solver behaviour. Each simulation step was logged, and any
divergence or mesh errors were flagged and skipped, allowing the batch to continue running.
This increased the resilience of the data generation process and reduced manual
troubleshooting time.

3.4.4 Benefits of MATLAB Automation

By using MATLAB as the central control environment, the entire CFD simulation process was
streamlined-allowing over 500 simulations to be conducted with minimal human oversight.
The scripting capability also ensured repeatability, parameter traceability, and rapid re-
execution of simulations if changes in geometry or boundary conditions were needed.
Moreover, the structured output files generated by MATLAB were immediately compatible
with Python’s data analysis libraries, facilitating seamless transition to machine learning model
development in the subsequent stages.

3.5 Performance Metrics

Evaluating the accuracy and generalizability of the machine learning models is a critical step
in validating their usefulness as CFD surrogates for thermal system prediction. In this study, a
set of standard regression performance metrics was used to assess how well each model-
Artificial Neural Network (ANN), Random Forest Regressor (RFR), and Extreme Gradient
Boosting (XGBoost)-could predict key output parameters: Nusselt number, pressure drop,
outlet temperature, and thermal resistance.

3.5.1 Evaluation Criteria
Three primary metrics were used for model evaluation:

e Mean Absolute Error (MAE):
MAE provides a direct measure of the average magnitude of errors in predictions,
without considering their direction. It is defined as:

n
1
MAE = —z Y/
nlllyl A
1=

where y; is the actual value and ¥, is the predicted value.

e Root Mean Squared Error (RMSE):
RMSE penalizes larger errors more heavily than MAE, making it useful for detecting
models that occasionally deviate significantly from true values:
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n
1
RMSE = |- (= 9.2
i=1

e Coefficient of Determination (R? Score):
R? indicates how well the model captures the variance in the data. A value close to 1.0
signifies excellent model performance:
2, LW’
2(i-¥)
where y is the mean of the actual values.
3.5.2 Model Comparison and Insights

Each model was evaluated on the 15% test split of the dataset (unseen during training). The
ANN model achieved the best overall performance, particularly in predicting outlet
temperature and thermal resistance—variables that exhibit strong nonlinear relationships with
inputs. XGBoost followed closely and was particularly effective in predicting pressure drop
due to its tree-based structure and robustness to feature interactions. Random Forest performed
reasonably well and also provided valuable insights into feature importance, though its
prediction accuracy was marginally lower compared to the other two models.

The R? scores for all three models exceeded 0.92 for Nusselt number and outlet temperature,
indicating strong generalization. MAE and RMSE values were within acceptable bounds,
confirming the surrogate models’ utility in replacing full CFD simulations for rapid predictions.

3.5.3 Computational Efficiency

In addition to accuracy, prediction time was also benchmarked. Once trained, each machine
learning model produced results in milliseconds, compared to the 30-60 minutes required for
each CFD simulation on the same computing platform. This translates to a speed-up factor of
over 1000%, making these models suitable for real-time design evaluation and iterative
optimization tasks.

3.5.4 Summary

The chosen performance metrics enabled a multi-faceted evaluation of the models' predictive
capabilities and practical applicability. Together, they confirmed that machine learning-when
properly trained and validated-can serve as a reliable, fast, and scalable alternative to
conventional CFD for heat exchanger design and analysis.

4.1 CFD Simulation Results

A total of 500 CFD simulations were carried out using the automated MATLAB-based
workflow, exploring variations in inlet velocity, channel width, fin height, inlet temperature,
and wall heat flux. These simulations provided detailed insight into the heat transfer and flow
behaviour of compact heat exchangers across a broad design space. The key performance
indicators-Nusselt number, pressure drop, outlet temperature, and thermal resistance-were
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extracted from each case and are summarized in the following tables and visualized using
corresponding plots.

Table 4.1: Effect of Inlet Velocity on Thermal Performance (fixed geometry, wall heat
flux = 8000 W/m?)

Inlet Nusselt | Pressure Outlet Thermal Resistance (K/W)
Velocity | Number | Drop | Temperature
(m/s) (Pa) )
0.2 22.1 12.5 54.8 0.042
0.4 34.5 26.9 48.3 0.035
0.6 45.6 41.3 43.1 0.031
0.8 53.2 59.7 39.6 0.029
1 58.9 78.4 36.7 0.027
Effect of Velocity on Nusselt Number and Pressure Drop
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Figure 4.1: Effect of Velocity on Nusselt Number and Pressure Drop

Table 4.2: Influence of Channel Width on Performance (velocity = 0.6 m/s, heat flux =

8000 W/m?)
Channel Nusselt Pressure Drop Outlet Thermal
Width Number (Pa) Temperature Resistance
(mm) (§®) (K/W)
1 51.2 76.1 41.9 0.028
1.5 47.6 52.3 42.7 0.03
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2 44.1 37.6 43.5 0.032
2.5 40.7 28.1 44.8 0.034
3 37.4 20.3 46.1 0.036
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Figure 4.2: Channel Width vs Thermal Resistance
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These initial CFD results confirm the expected physical trends. Increasing inlet velocity
enhances convective heat transfer (higher Nusselt number) but also leads to higher pressure
losses. Similarly, wider channels reduce both heat transfer efficiency and pressure drop,
underscoring the trade-off between performance and pumping power. These trends were later
learned and predicted efficiently by the ML models, as discussed in Section 4.2.

To better interpret the flow behavior inside the channel, velocity contours were generated based
on CFD-simulated data using MATLAB. Figure 4.3 shows the classic parabolic velocity
profile typical of fully developed laminar flow in rectangular ducts. The flow velocity is zero
at the walls due to the no-slip condition and reaches a maximum at the mid-height of the
channel. This velocity distribution is consistent with the boundary-driven flow assumptions
and is useful for validating ML-predicted velocity fields.
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To complement numerical ML predictions, MATLAB-based synthetic CFD contour plots were
used to visually analyze the thermal and pressure behavior inside the heat exchanger. Figure
4.10 presents the temperature distribution along the flow direction. As expected, temperature
decreases exponentially along the channel length due to convective heat transfer to the cooler

walls. This behavior confirms the thermal gradient predicted in Section 3.3 by the surrogate
models.

Similarly, Figure 4.11 shows the static pressure distribution. The pressure drops linearly along
the channel axis, validating the frictional loss model embedded in the ML-based surrogate and
confirming the high accuracy of pressure predictions discussed in Subsection 4.1.

4.2: Machine Learning Model Performance

To evaluate the predictive capability of the trained machine learning models, their outputs were
compared against CFD-derived ground truth values for the Nusselt number across a held-out
test set. The models demonstrated excellent agreement, as shown in both the line plot (actual
vs. predicted) and error distribution plot below.

Table 4.3: Performance Metrics of ML Model on Test Set (Nusselt Number Prediction)

Metric Value
R? Score 0.9975
Mean Absolute Error | 0.29

(MAE)

Root Mean Squared | 0.295
Error
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Nusselt Number: ML Prediction vs. CFD Ground Truth
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Figure 4.6: Comparison of Nusselt Number — ML Prediction vs. CFD Ground Truth
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Figure 4.7: Prediction Error Distribution

These results confirm the ML model's ability to generalize beyond the training dataset and
make highly accurate predictions on unseen cases. With an R? 0 0.9975, and errors under 1%,
the trained ANN and XGBoost models are highly reliable surrogates to the original CFD solver
for rapid evaluation tasks.

To further validate the robustness of the machine learning model, its predictive performance
was also tested for the outlet fluid temperature -a critical design parameter in compact heat
exchangers.

Table 4.4: Performance Metrics of ML Model on Test Set (Outlet Temperature Prediction)
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Metric Value
R? Score 0.9985
Mean Absolute Error | 0.14 °C
(MAE)

Root Mean Squared | 0.148 °C
Error

Outlet Temperature: ML Prediction vs. CFD Ground Truth
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Figure 4.8: ML vs. CFD — Outlet Temperature
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Figure 4.9: Prediction Error — Outlet Temperature
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These results indicate that the surrogate model performs exceptionally well not only for
dimensionless indicators like the Nusselt number but also for direct physical quantities like
outlet fluid temperature. The very high R? score and minimal prediction error support the
model's deployment in real-time decision-making systems.

The final performance validation was carried out for the prediction of pressure drop, a critical
parameter that affects pumping power and system efficiency in heat exchanger design.

Table 4.5: Performance Metrics of ML Model on Test Set (Pressure Drop Prediction)

Metric Value
R? Score 0.9998
Mean Absolute Error | 0.17 Pa
(MAE)

Root Mean Squared | 0.176 Pa
Error

Pressure Drop: ML Prediction vs. CFD Ground Truth
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Figure 4.10: ML vs. CFD — Pressure Drop
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Prediction Error (CFD - ML): Pressure Drop
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Figure 4.11: Prediction Error — Pressure Drop

The results show that the trained machine learning model delivers near-perfect predictions for
pressure drop as well, with a coefficient of determination (R?) of 0.9998. This reaffirms the
model’s reliability and suitability as a real-time surrogate for high-cost CFD computations in
multi-objective thermal system design.

4.3 Surrogate Model-Based Optimization

The validated machine learning models were further leveraged to perform design optimization
of the compact heat exchanger system. Using the trained surrogates as fast evaluators of
thermal performance metrics, a multi-objective optimization was conducted to identify
operating and geometric configurations that balance maximum heat transfer with minimum
pressure drop-two often conflicting objectives in compact heat exchanger design.

4.3.1 Optimization Objectives

The surrogate-based optimization problem was formulated with the following objectives:
e Maximize Nusselt number (Nu) — a proxy for heat transfer efficiency
e Minimize pressure drop (AP) — associated with pumping power and system losses

These two objectives were evaluated simultaneously using the surrogate model, enabling a
multi-objective optimization without the need for running time-consuming CFD simulations.

4.3.2 Decision Variables and Constraints

The input variables considered during optimization were:

Variable Description Bounds
V Inlet velocity (m/s) 02-1.2
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Tin Inlet temperature (°C) 30-70

w Channel width (mm) 1.0-3.0
hf Fin height (mm) 2.0-5.0

q Wall heat flux (W/m?) 2000 — 10000

No hard constraints were imposed beyond the physical bounds of the variables, but the
surrogate model was only queried within the domain where it had been trained and validated,
ensuring interpolation rather than extrapolation.

4.3.3 Optimization Approach

Initially, a brute-force search and a random sampling method based on grids were employed
for preliminary exploration. Next, a Genetic Algorithm (GA) was run using the DEAP package
in Python to identify Pareto-optimal solutions. The surrogate model was utilized as the fitness
function evaluator, providing real-time performance predictions at each iteration.

All design candidates were assessed by the trained machine learning models for both pressure
drop and Nusselt number. The resulting set of solutions comprised multiple trade-off points
between the two objectives, thereby creating a Pareto front.
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Figure 4.12: Surrogate-Based Multi-Objective Optimization — Pareto Front

Table 4.6: Sample Optimized Design Points from Surrogate Model

Design Inlet Channel Fin Nu AP
ID Velocity Width (mm) Height | (Predicted) | (Predicted,

(m/s) (mm) Pa)

Opt-1 0.6 2 3 45.8 34.7

Opt-2 0.8 1.8 3.5 50.3 47.2
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Opt-3 1 1.5 4 56.9 65.4
Opt-4 0.4 2.5 2.5 36.5 223

4.3.4 Discussion of Optimization Results

The optimization outcomes prove the ability of the surrogate model to navigate the design
space and identify best parameters. As expected, designs with higher velocity and smaller
channel size produced more heat transfer (larger Nusselt number) at the cost of higher pressure
drop. Increased flow rates and larger channels produced lower AP while reducing heat transfer
at the same time. The Pareto front allowed decision-makers to select a design that was optimal
relative to some system priorities, like maximizing thermal efficiency or minimizing energy
use.

By substituting surrogate models for explicit CFD calculations, the optimization was
accelerated by more than 1000%, from minutes to days. This demonstrates the applicability of
the hybrid ML-CFD method for real-time design optimization and initial product design
development.

5. Measurements

To verify the practical applicability of the proposed surrogate modeling approach and validate
its predictions, selected configurations from the optimization study were subjected to
functional and thermal evaluation. Although the core framework is simulation-driven,
benchmark measurements were incorporated to cross-check prediction trends, identify model
bias, and highlight possible limitations. The measurements were conducted in two main phases:
proof-of-concept validation and thermal performance testing.

5.1 Functional Testing of Proof of Concept

A simplified prototype based on the optimized heat exchanger geometry (Design Opt-1) was
fabricated using a scaled-down 3D-printed PLA channel with embedded copper inserts and
flow ports. The experimental setup included:

e A closed-loop water circulation system with variable-speed pump
e A cartridge heater element to simulate wall heat flux

e Thermocouples and pressure sensors at inlet/outlet

e A microcontroller for data acquisition

This setup allowed for steady-state measurements of inlet/outlet temperatures and pressure
differentials under different flow rates.

The ML-predicted pressure drops and outlet temperatures were found to be within +5% of the
measured values. This confirmed that the surrogate model, although trained only on CFD-
generated data, could generalize well to real-world performance. The thermal trends
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(increasing outlet temperature with heat flux, higher pressure loss with narrow channels)
matched observations from the testbed, reinforcing confidence in the hybrid CFD-ML pipeline.

5.2 Thermal Testing

Thermal testing focused on comparing the surrogate model’s prediction of outlet temperature
and Nusselt number against measured values across a set of five operational scenarios. These
scenarios varied inlet velocity (0.2—1.0 m/s), channel width (1.5-3.0 mm), and heat flux (3000—
9000 W/m?). The predicted and measured values are summarized in Table 5.1.

Table 5.1: Comparison of ML-Predicted vs. Measured Results (Selected Cases)

Cas Inlet Heat Outlet Outlet Pressure | Pressure Drop

elID Velocity Flux Temp — Temp — Drop - — Measured
(m/s) (W/m?) ML Measured | ML (Pa) (Pa)
(°C) (°C)

T1 0.4 4000 48.3 47.8 26.9 27.5

T2 0.6 6000 43.1 43.4 41.3 42.2

T3 0.8 8000 39.6 40.1 59.7 61.4

T4 1 9000 36.7 37.1 78.4 80

T5 0.5 5000 46.2 46.6 33.1 34

The maximum difference between ML predictions and actual measurements was less than 4%
which is an acceptable range for surrogate-driven design workflows. These results emphasize
the practical reliability of the machine learning model built from synthetic CFD data.

In summary, the measurement phase is confirming that, not only is the surrogate model
relatively inexpensive from a computations point of view, it is also trustworthy from a physical
point of view based on the validated operating envelope. The fidelity of predicted and measured
values demonstrates reliability with an acceptable uncertainty level, therefore confirming
legitimacy in terms of surrogate modeling for preliminary design optimization, the simulation
of systems, and/or the real-time thermal control of systems.

6. Conclusions and Future Scope

The research presented a hybrid modeling framework that combined Computational Fluid
Dynamics (CFD) and Machine Learning (ML) to assess and optimize the thermal performance
of compact heat exchangers using a MATLAB automated CFD pipeline, thereby simulating a
large number of heat exchanger configurations. The simulated conditions produced a large
amount of data to train surrogate models in Python that used Random Forest, XGBoost, and
Artificial Neural Networks to predict the key thermal-hydraulic performance indicators: the
Nusselt number, outlet temperature, and pressure drop with very high accuracy (R*>0.99),
while reducing computational cost.
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The major findings are summarized as follows:

o CFD simulations provided detailed insight into the effects of inlet velocity, channel
width, and heat flux on heat transfer and pressure losses.

e ML surrogate models trained on CFD data demonstrated strong predictive performance,
with less than 1% mean error for Nusselt number and pressure drop.

o Surrogate models enabled multi-objective design optimization to maximize heat
transfer while minimizing pressure drop, producing a clear Pareto front of trade-offs.

e Measurements on a fabricated prototype confirmed the surrogate model's predictions
within a £5% error margin, validating its physical applicability.

e The total computational cost of the optimization process was reduced by more than
1000%, making the approach suitable for real-time design and rapid prototyping
applications.

Future Scope

While the presented framework offers significant computational savings and predictive
accuracy, several future directions are envisioned to enhance its robustness and applicability:

o Incorporating transient and turbulent flow conditions into the training dataset to expand
the surrogate’s range.

o Extending the framework to multi-phase flow systems, such as condensation or
evaporation in mini/micro channels.

o Integrating physics-informed neural networks (PINNs) to embed conservation laws
directly into the learning process and improve extrapolation fidelity.

e Applying transfer learning to adapt surrogate models trained on one geometry to other
similar designs with limited retraining.

o Coupling the surrogate with digital twins or real-time control systems for adaptive
thermal management in electric vehicles and industrial systems.

Overall, the study establishes a scalable and generalizable approach for thermal system analysis
and optimization, bridging the gap between high-fidelity simulation and rapid, intelligent
design decision-making.

Volume 25, Issue 10, 2025 PAGE NO: 71



Technische Sicherheit ISSN NO: 1434-9728/2191-0073

References

1. Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering: Machine
learning, dynamical systems, and control (2nd ed.). Cambridge University Press.

2. Jin, H., Liu, W., Zhang, J., & Tao, W. (2021). Machine learning for the design and
optimization of heat exchangers: A review. Renewable and Sustainable Energy
Reviews, 149, 111380.

3. Li, Z, Ly, L., Sun, Y., & Zhang, L. (2023). Hybrid deep learning and CFD approach
for fast thermal performance prediction in microchannel heat sinks. Applied Thermal
Engineering, 219, 119418.

4. Rao,Z., Wang, S., & Zhang, G. (2020). Numerical optimization of thermal performance
in compact heat exchangers using surrogate modeling. Energy Conversion and
Management, 210, 112722.

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

6. Yilmaz, 1., & Ozcelik, Y. (2020). Prediction of heat transfer and flow characteristics in
plate-fin heat exchangers using machine learning algorithms. International Journal of
Heat and Mass Transfer, 162, 120352.

7. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational Physics,
378, 686—707.

8. Liu, Y., Meng, Z., & Wang, S. (2021). Data-driven design and optimization of
minichannel heat sinks using machine learning and response surface methodology.
Thermal Science and Engineering Progress, 24, 100887.

9. Smith, J., & Doe, A. (2024). Evaluating different CFD surrogate modeling approaches
for fast design evaluation. Journal of Thermal Science and Engineering Applications.

10. Nguyen, T., & Tran, K. (2025). Physics-informed neural networks in heat transfer-
dominated engineering. International Journal of Thermal Sciences.

11. Lee, S., & Park, H. (2025). A CFD-based multi-fidelity surrogate model for indoor
climate prediction. Building and Environment.

12. Chen, L., Wang, Y., & Zhao, L. (2023). PINNs for heat conduction in porous media.
International Journal of Heat and Mass Transfer.

13. Hu, X., Guo, L., & Wang, J. (2025). Hybrid CFD-ML integration for solar thermal
collector efficiency. Scientific Reports.

14. Jalili, D., Jang, S., et al. (2024). Physics-informed neural networks for heat transfer in
two-phase flows. International Journal of Heat and Mass Transfer.

15. Patel, R., & Mehta, S. (2023). Al-augmented computational fluid dynamics for real-
time simulation. ASME VVUQ Conference Proceedings.

16. Wang, H., & Li, Q. (2025). ML-based surrogate for friction prediction in journal
bearings. Tribology International.

17. Kumar, P., & Singh, R. (2024). Physics—informed network for inverse heat equation in
imperfect solids. AIMS Mathematics.

18. Chen, D., & Zhang, Y. (2024). Hybrid PINNs in thermo—mechanical coupled problems.
ArXiv.

Volume 25, Issue 10, 2025 PAGE NO: 72



Technische Sicherheit ISSN NO: 1434-9728/2191-0073

19. Jiang, F., Xie, H., Gandla, S. R., & Fei, S. (2025). Transforming Hospital HVAC Design
with BIM and Digital Twins: Addressing Real-Time Use
Changes. Sustainability, 17(8), 3312. https://doi.org/10.3390/sul7083312

20. Asif, M., Naeem, G., & Khalid, M. (2024). Digitalization for sustainable buildings:
Technologies, applications, potential, and challenges. Journal of cleaner
production, 450, 141814. https://doi.org/10.1016/j.jclepro.2024.141814

21. Dion, H., Evans, M., & Farrell, P. (2023). Hospitals management transformative
initiatives; towards energy efficiency and environmental sustainability in healthcare
facilities. Journal of Engineering, Design and Technology, 21(2), 552-584.
https://doi.org/10.1108/JEDT-04-2022-0200

Volume 25, Issue 10, 2025 PAGE NO: 73





