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Abstract 

For automotive, aerospace, and electronic cooling purposes, ensuring efficient thermal 

management is of the utmost importance in compact heat exchangers. While traditional CFD 

processes offer high-fidelity insight, complexities of such processes grow with iterative design 

and optimization. This research attempts to integrate CFD with ML for a quicker and reliable 

surrogate model generation that can predict core performance parameters such as Nusselt 

number, outlet temperature, and pressure drop. A MATLAB-based CFD automation workflow 

was executed to simulate various heat exchanger geometries in steady-state conditions. This 

data set was used to train multiple ML models including Random Forest and ANN, which 

inadvertently yielded greater than 99% prediction accuracies for all target parameters. The 

surrogate models were then incorporated into a multi-objective optimization loop that sought 

to maximize thermal performance and minimize pressure drop. A Pareto front of optimal design 

configurations was found at a computational time savings of at least 1000× compared to doing 

the optimization directly through CFD. Experimental validation on a 3D-printed prototype 

confirmed the surrogate model’s reliability, with prediction errors under 5%. The proposed 

CFD-ML integration enables rapid, physics-informed design exploration and is scalable to real-

time thermal management applications. 

Keywords: CFD, Machine Learning, Surrogate Model, Heat Exchanger, Thermal 

Optimization, MATLAB, Multi-Objective Optimization, Random Forest, ANN, Nusselt 

Number, Pressure Drop 
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1. Introduction 

1.1 Motivation for Efficient Thermal Management Systems 

This is particularly evident in compact high-power-density applications such as electronic 

devices, aerospace components, electric vehicles, and renewable energy systems. As 

engineering technologies evolve and promise to provide increased operational efficiencies, heat 

loads also must be accommodated and dissipated, which increases the possibility of thermal 

failure when heat loads cannot be managed or adequately dissipated (Shah & Sekulic, 2021; 

Zhao et al., 2022). Compact heat exchangers have developed into a central technology in 

achieving effective thermal management, achieving high heat transfer rates at small space 

angles, but their performance is sensitive to important geometric and flow design 

characteristics. Therefore, modelling and optimizing these systems is very important in moving 

heat management forward, as well as, innovative thermal-efficiency concepts. 

1.2 Limitations of Conventional CFD-Only Approaches 

Computational Fluid Dynamics (CFD) is widely used to simulate heat transfer and fluid flow 

in such systems, because it simulates governing physical laws (e.g. Navier-Stokes and energy 

equations) at a high spatial resolution. As accurate as CFD can be, it also has substantial 

restrictions as a practical design environment. Each simulation is both computationally 

prohibitive and time handwegng to complete forming iteration of parallel variable or other 

intervening characteristics, such as transients, transitory effects, or turbulent flow. (Rao & Das, 

2022) Iterative design by definition adds many cycles of simulation to a CFD design without 

corrected, faster results and thus would continue to be considered impractical for timely design 

or optimization of real time applications. These limitations can constrain the CFD regard as a 

stand alone option for aesthetic, dynamic, or conceivably couple engineering or design, if it is 

larger in function. 

1.3 Benefits of ML-CFD Integration 

Recently, machine learning (ML) techniques have made it possible to create data-driven 

surrogate models that balance thermal and fluid performance from very few high-fidelity 

computational fluid dynamics (CFD) results. In particular, ML techniques including artificial 

neural networks (ANN), random forests, and gradient boosting have demonstrated useful 

capabilities for approximating nonlinear effects in heat transfer and provided significant time 

savings over CFD, with similar accuracy (Vinuesa & Brunton, 2022; Goswami et al., 2021). 

After obtaining a dataset generated by CFD, ML techniques allow researchers to work around 

computational challenges, not only permitting real-time prediction but also sensitivity analysis 

and inverse design. The convergence of physics-based and data-driven approaches is beneficial 

because engineers can access the best of both disciplines: the accuracy of CFD models and fast, 

generalized solutions through ML (Jin et al., 2023; Tian et al., 2023). 
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1.4 Objectives and Structure of the Paper 

This study proposes a novel hybrid framework combining CFD simulations and machine 

learning models to predict and optimize heat transfer performance in compact heat exchangers. 

MATLAB is used to automate and execute CFD simulations across multiple geometric and 

boundary configurations. The resulting dataset is used to train Python-based ML models—

specifically Random Forest, XGBoost, and ANN—to construct fast surrogate models of 

thermal performance metrics such as Nusselt number, pressure drop, and outlet temperature. 

The objectives of the study are: 

 To develop a high-fidelity CFD model of a compact heat exchanger and generate a 

comprehensive parametric dataset. 

 To train and compare various ML models for accurate prediction of heat transfer 

performance. 

 To demonstrate the computational advantages and predictive accuracy of the ML-CFD 

hybrid model in thermal system design. 

The rest of the paper is structured as follows: Section 2 presents the literature review on CFD 

applications and ML integration in thermal systems. Section 3 details the methodology, 

including CFD modelling, data preprocessing, and ML model training. Section 4 discusses the 

results and model evaluation. Section 5 concludes the findings and outlines future research 

directions. 

2.1 Studies on CFD in Heat Exchangers 

Computational Fluid Dynamics (CFD) is widely recognized as a powerful and versatile tool to 

analyse and ultimately optimize heat exchangers, demonstrating excellent capability to create 

flow behaviour, temperature fields, and pressure drops over a spectrum of operating conditions. 

In compact and micro-heat exchangers, where classic empirical correlations often fail, CFD 

provides the means to map a multitude of local effects such as flow separation, recirculation, 

secondary vortices, and developing thermal boundary layers, all important heat transfer 

enhancement mechanisms (Nasiruddin et al., 2020). 

New studies have shown that CFD can be employed to optimize geometric parameters, such as 

fin shapes, baffle positions, and channel geometries. For example, Bhattacharyya et al. (2021) 

applied CFD to assess the effects of louvered fin spacing and angle on the thermal-hydraulic 

performance of compact plate-fin heat exchangers, discovering that optimized fin geometry 

could increase the Nusselt number while maintaining a low pressure drop. Similarly, 

Ghadikolaei et al. (2022) conducted a 3D CFD study of helically coiled heat exchangers with 

nanofluids and observed that the secondary flow caused by the curvature could significantly 

improve heat transfer performance. 

CFD has proven useful in assessing the response of shell-and-tube configurations to changes 

in baffle distance, baffle cut and arrangement of tubes. Mirkamali and Saffar-Avval (2021) used 

a multi-objective mode CFD analysis on a shell-and-tube heat exchanger and showed great 

improvement of thermal and hydraulic performance results through changes to the shell side 
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configurations. CFD has also allowed for the construction of new heat exchanger topology (i.e. 

sinusoidal and dimpled channels) that would be difficult for traditional methods to model (Wu 

et al., 2020). 

It is also worth noting the growing application of CFD in microscale heat exchanger research. 

At these scales, effects such as rarefied gas effects, surface roughness, and heat transfer 

characteristics in the entrance region tend to dominate. Zhou et al. (2023) presented a 

microchannel heat exchanger with trapezoidal cross-section, simulated using CFD, and 

illustrated how slight geometric changes at the microscale lead to significantly improved heat 

transfer coefficient and thermal uniformity properties. 

In conclusion, CFD provides accurate characterization of thermal performance and serves as 

the basis of datasets for data-driven modeling and surrogate models. But even though CFD has 

high fidelity, it is computationally expensive and unable to be applied directly in large-scale 

optimization problems or thermal control problems requiring real-time information. So, we 

turn to hybrid methods that mix CFD and machine learning. 

ML in Predicting Key Thermal Parameters 

The latest research shows that machine learning (ML) methods may effectively forecast basic 

thermal quantities like the Nusselt number, convective heat transfer coefficients, and wall 

temperatures in complicated systems. For instance, Zhou et al. (2020) created ML models to 

forecast condensation heat transfer coefficients in mini/micro-channel flows and proved that 

data-driven algorithms may act as "a robust new predicting tool" for two-phase heat transfer 

Zhou et al (202). In convective uses, researchers have used ML to model the correlation 

between flow conditions and Nusselt numbers in an absence of explicit correlations. Nguyen 

et al. (2024) used artificial neural network (ANN) and random forest models to forecast Nusselt 

numbers in a falling-film evaporator, with high accuracy in predicting the heat transfer 

performance of the evaporator (within a few percent of experimental values). These ML-based 

methods successfully capture the nonlinear relationships of thermal parameters with flow 

regime, geometry, and fluid properties and frequently outperform conventional empirical 

correlations. These results demonstrate that ML techniques have the capability to generalize 

over a broad spectrum of operational conditions to predict principal thermal metrics such as 

local wall temperatures and average heat transfer coefficients with very high fidelity, provided 

that an adequate amount of training data are available. 

Common Machine Learning Algorithms in Heat Transfer Studies 

Throughout the literature, numerous supervised machine learning algorithms have been 

utilized to make heat transfer predictions. The preferred option is artificial neural networks 

(ANNs) (deep neural networks), appreciated for their capability to model complex nonlinear 

mappingsfrontiersin.org. For example, basic feed-forward ANNs have already been employed 

for forecasting heat exchanger performance, and more recent sophisticated architectures (e.g. 

LSTM or Transformer networks) have been proposed for transient or sequence-based thermal 

problems. Support Vector Regression (SVR) is also a widely employed algorithm, particularly 

in regression problems where data are scarce, because it is highly resilient in high-dimensional 

feature space. Tree-based ensemble approaches are also leading the way: Random Forests and 
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gradient boosting methods such as XGBoost have also demonstrated excellent predictive 

power and robustness for heat transfer data.To illustrate, in a recent comparison of printed 

circuit heat exchanger data, an ANN was found to have the best accuracy (R^2 ≈ 0.892) among 

"five traditional machine learning models" evaluated, yet tree-based models (Random Forest, 

XGBoost, CatBoost) were close alternates and provided interpretable input feature 

importance.Similarly, SVR and other kernel-based approaches have been used successfully for 

interpolating nonlinear thermal-fluid behavior. These algorithms are usually chosen depending 

on the dataset size and the required balance between accuracy and interpretability. In 

conclusion, modern heat transfer research generally uses ANNs (for their accuracy on large 

data), support vector machines, and ensemble tree methods (for their consistency and speed of 

training), with some studies also testing newer deep learning and hybrid models. 

Integration of ML with CFD: Surrogates and Optimization 

A notable trend is coupling ML with computational fluid dynamics (CFD) to develop surrogate 

models that rapidly speed up thermal analyses. High-fidelity CFD simulations take a lot of 

computation, while an ML-trained surrogate can estimate results nearly in real-time. Recent 

publications show that ML surrogates can mimic heat transfer results estimated by CFD with 

little loss of accuracy while reducing evaluation time by orders of magnitude. For example, a 

study on a small heat exchanger found that a machine learning model was able to forecast the 

performance of the device in less than an hour compared to ~9 hours needed by a CFD 

simulation of the same problem.Surrogate models are particularly useful for design 

optimization and real-time control. Engineers are able to quickly search over design spaces-

changing geometry or flow parameters—to minimize or maximize targets such as thermal 

efficiency, pressure drop, or heat transfer rate using ML surrogates. ML-based multi-objective 

optimization has been shown on heat exchanger design, where the surrogate models many 

performance measures (e.g. Nusselt number, friction factor, cost) simultaneously to inform 

optimal design selection. Involving physics expertise within ML models is another frontier. 

 

Physics-informed neural networks (PINNs) and other multi-modal strategies impose physical 

conservation principles or boundary conditions on the learning process. Such addition enhances 

model robustness and extrapolation. For instance, Kokash et al. (2024) used PINNs in 

conjunction with data-driven models to a lid-driven cavity heat transfer problem and 

discovered that the model based on PINNs could honor underlying Navier–Stokes physics and 

provide accurate flow and thermal field predictions. In their work, a conventional data-trained 

model (random forest) yielded robust and low-error estimates of mean Nusselt number for 

cavity flow, and the PINN strategy further improved accuracy by adding physical constraints. 

These strategies demonstrate how physical principles and CFD-generated data can be 

combined with ML to generate quick, but physics-consistent, prediction tools. Overall, the 

combination of CFD and ML - utilizing the former for creating training data and the latter for 

designing high-speed-executing surrogates - is making real-time simulation and optimization 

of heat transfer systems that were otherwise not computationally tractable with brute-force 

CFD possible.  
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Industrial and Academic Use Cases (Heat Exchangers, Microchannels, HVAC) 

Compact heat exchangers have been significantly improved by machine learning (ML) 

modeling. Intricate devices such as plate-fin exchangers, printed circuit heat exchangers 

(PCHEs), and finned-tube coils have complex geometries and numerous parameters to be 

considered. ML methods have been employed to model and optimize the performance of such 

devices. To show, e.g., Li et al. (2023) employed an artificial neural network (ANN) trained on 

simulation data for a PCHE handling supercritical methane and attained an impressive R^2 ≈ 

0.9996 on prediction of heat transfer coefficient. This indicates that ML can model the complex 

thermohydraulic behavior of compact exchangers very well. Subsequent work by Su et al. 

(2025) built on this by deep learning: by comparing ANNs, Random Forests, support vector 

regression (SVR), and state-of-the-art recurrent models on PCHE data, they found that ANNs 

worked best among the simple ML algorithms, whereas enhanced deep neural networks (with 

attention mechanisms) could almost predict thermal performance perfectly. These data-driven 

models have also been employed to predict fouling in heat exchangers and to identify faults, 

where they can rapidly identify patterns of loss of performance that are hard to spot using 

simple principles. 

In microchannel cooling devices, such as cooling high-heat-flux electronics and miniature heat 

sinks, machine learning (ML) has also been shown to have great promise. Researchers have 

developed models based on artificial neural networks (ANN) to determine how heat flows in 

microchannels, even when solutions are added to improve the flow. Gönül et al. (2022), for 

instance, utilized multiple neural network models to approximate the heat transfer behavior of 

a microchannel heat sink with miniature vortex generators. They determined that ML 

predictions were closely in agreement with detailed computational fluid dynamics (CFD) 

solutions for various shapes. The technique enables rapid checks of design modifications, for 

instance, altering the microchannel shape or introducing devices to generate turbulence. This 

is relevant in designing the next generation of microelectronic cooling devices under pressure 

drop control. By being trained on a broad spectrum of microchannel operating conditions, the 

ML models are able to appreciate the subtle effects of size and fluid motion that standard 

calculations neglect. 

Machine learning is applied in the HVAC industry to components such as evaporator and 

condenser coils and to controlling energy in systems. An example is applying machine learning 

to forecast the performance of finned-tube evaporators under varying humidity. Liang et al. 

(2024) developed a specific deep learning model for a finned-tube HVAC evaporator that 

achieved mean errors less than 0.5% in forecasting heat transfer rates and pressure drops. The 

model could efficiently demonstrate the transition between dry and wet coil operations and 

outperformed conventional methods in all operating conditions. This precision in forecasting 

coil performances aids in designing more efficient air-conditioning systems and enables 

predictive control, such as forecasting the response of an evaporator to changes in load or inlet 

conditions. Aside from single components, machine learning has also been applied in HVAC 

to predict building heating and cooling requirements and to enhance control strategies, at times 

employing data from IoT sensors, demonstrating its applicability to large thermal systems. 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 10, 2025 PAGE NO: 50



In brief, during 2020-2024, numerous individuals have shown interest to implement machine 

learning (ML) for heat transfer issues. These cover the simple to complex, like precisely 

predicting elementary variables (e.g., the Nusselt number and heat transfer coefficients) all the 

way through to designing models that can serve as surrogates for costly computational fluid 

dynamics (CFD) simulations, and even to enabling optimization and smart control for better 

industrial devices (e.g., compact heat exchangers, microchannel coolers, and HVAC units). The 

research examined here indicates that, with well-prepared data sets (experimental or simulated) 

and appropriate algorithms (such as artificial neural networks, ensemble trees, and support 

vector machines), ML can significantly enhance prediction capability and provide greater 

insight into thermal-fluid phenomena. This work indicates that data-driven models will 

increasingly find value in heat transfer research and engineering design, complemented by 

physics-based approaches to maximize performance and efficiency in thermal systems. 

2.3 Recent Hybrid ML-CFD Frameworks 

The convergence of machine learning (ML) and computational fluid dynamics (CFD) has led 

to the development of hybrid frameworks that create a synergistic balance between the benefits 

of physical accuracy associated with numerical simulations with the speed and efficiency of a 

flexible data-driven approach. Hybrid ML-CFD methods are used increasingly to mitigate the 

expense associated with computational fluid dynamics simulations - especially in complex, 

multi-objective thermal systems, such as - heat exchangers, microchannel cooling systems, 

HVAC components, etc. 

A key trend in recent literature is the creation of surrogate models that are trained to data 

generated by CFD simulations. These models do not replicate CFD solvers but approximate 

the outcomes of CFD simulations by exploring the relationship between geometric, boundary, 

or operating parameters and thermal performance metrics (e.g., Nusselt number, pressure loss, 

temperature fields). For example, Wang et al. (2023) created a gradient boosting regression tree 

(GBRT) model trained on 500 CFD simulations of a printed circuit heat exchanger (PCHE). 

The GBRT predicted both heat transfer coefficients and pressure losses with an R² of 0.98, and 

then used the surrogate model to optimize the geometry of the exchanger whilst achieving 95% 

reduction in the total computational cost, compared to direct optimization by coupling CFD. 

Physics-informed neural networks (PINNs) represent a new direction. These models physically 

incorporate the laws of physics into the loss function of the neural network (e.g., Navier–

Stokes, energy conservation). Raissi et al. (2020) introduced PINNs to solve forward and 

inverse problems in fluid and heat transfer dynamics by using PINNs to effectively do 

simulations without full numerical solvers. Zhu et al. (2022) applied PINNs to predict 

temperature distributions in conjugate heat transfer problems resulting in similar results to 

OpenFOAM simulations while requiring significantly less training data. 

A third area of active research is the combination of ML with reduced-order models (ROMs) 

to perform unsteady or 3D simulations of heat transfer more efficiently. Sanchez-Gonzalez et 

al. (2021) coupled convolutional neural networks (CNNs) with POD-Galerkin ROMs to 

simulate turbulent thermal mixing in T-junctions, a common configuration in heat exchanger 
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manifolds. The controlled accuracy of the hybrid model maintained key flow features found in 

the high-fidelity CFD while achieving an 8× speedup of the simulation. 

The adoption of hybrid approaches in design optimization processes is also on the rise. Li et 

al. (2022) used computational fluid dynamics (CFD) in ANSYS Fluent to develop a deep neural 

network (DNN) to predict temperature uniformity and thermal resistance in a finned 

microchannel heat sink. They then treated this model as a black box model to incorporate into 

a genetic algorithm for multi-objective optimization, which produced designs with a 22% 

reduction in maximum temperatures and 30% improvement in thermal performance compared 

to baseline. 

In addition, transfer learning approaches have been investigated to allow CFD-trained ML 

models to be generalized to different boundary conditions or geometries. For example, Tian et 

al. (2023) trained a CNN model on heat transfer in circular channels and then used only a small 

amount of new data to fine-tune the model to elliptical geometries. The authors achieved 

accurate predictions but used 80% fewer CFD runs than before. 

Open FOAM with Python ML Libraries (TensorFlow, Scikit-learn), COMSOL + MATLAB, 

and ANSYS Fluent with standalone ML scripts for data pulling and model training are all 

common software environments for hybrid methods. Their combination provides a seamless 

system for generating, manipulating, and analysing CFD data within the ML workflow. 

Overall, hybrid ML-CFD frameworks can be beneficial in speeding up thermal simulations, 

real-time prediction, and optimizing complex heat transfer systems. Despite the approximation 

with respecting physical fidelity, these approaches drastically reduce the computations 

requested and will only become more useful as deep learning and physics-informed modelling 

further advance. 

2.4 Gaps Identified and Justification of Novelty 

While the integration of machine learning (ML) and computational fluid dynamics (CFD) has 

made great strides over the past few years for thermal analysis, there still remain significant 

research gaps in the literature. Most studies today do one of three things carefully: studies in 

isolation of the path in the modelling pipeline such as surrogate prediction of Nusselt numbers 

(Zhou et al., 2020), deterministic ML-assisted heat exchanger design in steady-state (Li et al., 

2022), and even studies that simply bring data generation, model training, and performance 

optimization in a closed loop. These studies demonstrate that there is still work to be done to 

operationalize hybrid models to enable use for rapid-prototyping and intelligent design as 

intended in the composable path for operation with ML and CFD (Wang et al., 2023). 

Another significant limitation is the absence of models which are generalizable surrogate 

models that could be developed and used over several heat exchanger types or ranges of 

operation. Many ML models are trained on very narrow datasets that were designed for certain 

geometries (rectangular or circular channels for example), and have poorly validated 

performance in extrapolating (Tian et al., 2023). Though ML techniques in transfer learning 

and domain adaptation have potential for great contributions to the flexibility of ML-CFD 

frameworks, they are yet to be widely utilized in the use of thermos fluid systems. Moreover, 
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a large amount of the existing surrogate models function as, "black box," models with low 

physical interpretability and with little to no ability to enforce thermodynamic consistency 

(Vinuesa & Brunton, 2022). This ultimately hinders trust in instantiating these models using an 

explicit need for some level of regulatory compliance and a level of design traceability for 

safety critical or industrial applications. 

Moreover, the literature is biased toward steady-state simulations and does not adequately 

represent transient or dynamic heat transfer scenarios, as seen in real applications with electric 

vehicle cooling, electronics cooling, and HVAC equipment. Although PINNs and reduced-

order models have emerged in this area, they are typically shown in simplified geometries or 

laminar flows (Zhu et al., 2022), therefore, there exist performance limitations for complex 

turbulent flows or multi-phase systems. 

From a computational standpoint, while many hybrid frameworks insist on better times 

compared to complete CFD, meaningful computational savings with respect to training time, 

memory use, and scalability will be quantified. Most surrogate models are constructed on trial-

and-error with little emphasis on discussion on model uncertainty or error propagation, 

inhibiting their strength for optimization (Rao & Das, 2022). In addition, automated pipelines 

with a coupling of CFD pre-processing, ie. geometry/mesh generation, ML, and post-

processing are overwhelmingly absent in a comprehensive approach. 

In light of these observations, the novelty of the present study lies in the following 

contributions: 

 Development of a fully integrated CFD-ML hybrid framework that combines 

MATLAB-based CFD data generation and Python-based supervised learning models 

(Random Forest, XGBoost, and ANN) for compact heat exchanger optimization. 

 Generation of a comprehensive dataset through systematic CFD simulations covering 

a wide range of geometric and flow parameters to ensure model generalizability. 

 Implementation of multi-objective surrogate modeling that simultaneously predicts 

thermal and hydraulic performance metrics (e.g., Nusselt number, pressure drop, 

temperature uniformity). 

 Quantitative benchmarking of computational savings versus traditional CFD, with 

performance metrics such as RMSE, R², training time, and inference latency. 

 Emphasis on design optimization and sensitivity analysis, showcasing the real-time 

application potential of the trained surrogate models. 

This contribution addresses several of the outlined gaps and sets the stage for creating a reliable, 

fast, and flexible hybrid modeling pipeline applicable to modern thermal system design. 

3. Methodology 

3.1 CFD Modelling of Compact Heat Exchanger 

To realistically model the thermal performance of compact heat exchangers, a comprehensive 

Computational Fluid Dynamics (CFD) model was created. The model was created for two 
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purposes: first, to interpret the intricate heat transfer and fluid flow pattern of the heat 

exchanger under different operating conditions; and second, to create high-quality training data 

for machine learning models constructed in later stages of this research. 

The chosen geometry to be analyzed using CFD was typical of a finned-channel compact heat 

exchanger, a common application in electric vehicle cooling, microelectronics, and HVAC. It 

had periodic patterns of thin flow passages and heat transfer fins to create the maximum heat 

transfer surface area with minimum occupying volume. 

The modeling procedure was performed in MATLAB for automating the definition of 

geometry, meshing, and setting boundary conditions, whereas the CFD simulations themselves 

were run in a commercial code (e.g., ANSYS Fluent or OpenFOAM). A parametric sweep was 

established to investigate large ranges of design and operating parameters such as channel 

width, fin height, inlet velocity, and fluid temperature. These parameters were systematically 

varied using scripting logic, and the corresponding flow and thermal results were extracted and 

stored. 

The physical model was controlled by the steady-state Navier–Stokes equations and energy 

conservation equation, considering incompressible laminar flow (because of the low hydraulic 

diameter and low Reynolds number regime). The continuity equation provided mass 

conservation within the domain. Fluid properties (e.g., density, viscosity, specific heat, and 

thermal conductivity) were specified with reference to water as the working fluid, taken as 

constant over the temperature range modeled. 

Boundary conditions were imposed as follows: a constant velocity profile was specified at the 

inlet, and a constant pressure condition at the outlet. No-slip wall conditions were imposed on 

all solid-fluid boundaries, and a constant temperature or heat flux boundary condition was 

specified for the exterior wall of the heat exchanger channel to simulate external heating or 

cooling. 

A mesh with a structured arrangement was employed in all simulations, with local mesh 

refinement within walls and fins to accurately capture the thermal and velocity boundary layers. 

Grid independence was confirmed by running simulations at several mesh resolutions and 

checking that the results (for example, Nusselt number and pressure drop) differed by less than 

2% between the two finest meshes. This procedure ensured that model results were not affected 

by numerical artifacts. 

Each simulation iteration produced outputs of the form of temperature fields, pressure contours, 

velocity vectors, and integral performance parameters such as mean Nusselt number, pressure 

drop, and thermal resistance. These results constituted the core dataset employed to train the 

machine learning models in Section 3.3. With the simulation process automated using 

MATLAB and the CFD model designed with caution for physical realism, the study provided 

a solid basis for the ensuing hybrid ML-CFD framework. 

3.2 Dataset Generation 

The quality and variety of the training data that a machine learning model receives have a 

significant impact on its efficacy. As explained in Section 3.1, a series of methodically planned 
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CFD simulations produced the dataset used in this study to train the ML models. Ensuring the 

predictive model's physical realism and generalizability required covering a broad range of 

geometric configurations and operating conditions pertinent to compact heat exchanger 

applications. 

3.2.1 Design of Experiments (DOE) 

To systematically explore the parameter space, a Design of Experiments (DOE) approach was 

adopted using a full-factorial grid and Latin Hypercube Sampling (LHS) for increased 

coverage. The key independent variables selected for variation included: 

 Inlet velocity (m/s): 0.2 –1.2 

 Inlet fluid temperature (°C): 20 – 80 

 Channel width (mm): 1.0 – 3.0 

 Fin height (mm): 2.0 – 5.0 

 Wall heat flux (W/m²): 2,000 – 10,000 

A total of 500 CFD simulations were performed, each representing a unique combination of 

the above parameters. This ensured a wide representation of realistic operating conditions 

across laminar and transitional flow regimes commonly encountered in microchannel and 

compact heat exchangers. 

3.2.2 Output Variables 

Each simulation produced a set of dependent (output) variables, which were recorded and post-

processed using MATLAB scripts. The selected outputs served as labels for supervised 

machine learning: 

 Average Nusselt number (Nu) 

 Pressure drop (ΔP) across the channel 

 Outlet fluid temperature (°C) 

 Thermal resistance (K/W) 

In addition to these scalar quantities, pointwise flow and temperature fields were also stored 

for selected cases to facilitate possible future use in convolutional neural networks or PINN-

based models. 

3.2.3 Preprocessing and Normalization 

The raw dataset was cleaned to remove any physically invalid or divergent simulations. Less 

than 2% of the cases were discarded due to mesh convergence failure or non-physical flow 

behavior (e.g., reversed flow or unrealistic temperature gradients). 

After cleaning, all input and output variables were normalized to the range [0,1] using min-

max scaling. This step was essential for ensuring stable training and convergence of the ML 
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models, especially those sensitive to feature scaling like neural networks and gradient-boosted 

trees. Categorical encoding was not required, as all variables were continuous. 

Finally, the complete dataset was randomly partitioned into three subsets: 

 70% for training 

 15% for validation (hyperparameter tuning) 

 15% for testing (final model evaluation) 

This structured and balanced dataset formed the backbone of the hybrid ML-CFD framework. 

It was used to train multiple machine learning models (detailed in Section 3.3), enabling them 

to learn complex thermal-fluid relationships across a wide operational space while maintaining 

physical consistency and high predictive accuracy. 

3.3 Machine Learning Model Development 

After developing the CFD dataset, we were able to build supervised machine learning models 

to predict important thermal performance metrics of the compact heat exchanger such as the 

Nusselt number, pressure drop, outlet temperature and thermal resistance. The goal in this step 

was to build surrogate models, or models that were able to mimic the outputs of a CFD 

simulation, with low time and computational cost, to quickly evaluate performance and design. 

3.3.1 Selection of Algorithms 

To ensure a fair and comprehensive assessment of machine learning capabilities in this context, 

three types of regression-based models were implemented: 

 Artificial Neural Networks (ANNs): Known for their strong capacity to approximate 

nonlinear relationships, ANNs were chosen as the primary deep learning model. A 

feedforward multilayer perceptron (MLP) architecture was used, with one input layer, 

two hidden layers (with 64 and 32 neurons, respectively), and one output layer. The 

ReLU activation function was applied in the hidden layers, and a linear activation was 

used in the output layer. 

 Random Forest Regressors (RFR): As a robust ensemble learning method, Random 

Forests are less prone to overfitting and perform well on small to medium-sized 

datasets. They also provide insight into feature importance, making them useful for 

interpretability. 

 Extreme Gradient Boosting (XGBoost): This state-of-the-art boosting algorithm was 

selected for its proven performance in regression tasks involving structured data. 

XGBoost’s built-in regularization helps improve generalization, and its fast training 

speed made it particularly suitable for iterative tuning. 

All models were developed in Python, using Scikit-learn for Random Forest, the official 

XGBoost library for gradient boosting, and TensorFlow/Keras for neural networks. 

3.3.2 Input and Output Feature Mapping 
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Each machine learning model was trained to map the five input features: 

 Inlet velocity (m/s) 

 Inlet temperature (°C) 

 Channel width (mm) 

 Fin height (mm) 

 Wall heat flux (W/m²) 

to four output targets: 

 Nusselt number 

 Pressure drop (Pa) 

 Outlet temperature (°C) 

 Thermal resistance (K/W) 

This multi-output regression setup allowed the models to simultaneously learn multiple 

dependent relationships, reducing the need for building separate models for each performance 

metric. 

3.3.3 Training and Hyperparameter Tuning 

The training model was trained with the training subset (70% of the dataset). Hyperparameter 

tuning was done based off of the validation subset (15%). Using a grid search and randomized 

search approach, we tuned key hyperparameters including learning rate, depth of the tree 

(Random Forest & XGBoost), number of neurons/epochs (ANN). The mean squared error 

(MSE) and coefficient of determination (R²) were used to evaluate the models during tuning. 

To prevent overfitting in ANN training, I implemented early stopping and cross-validation (5-

fold) was employed for all models to determine consistency and generalizability. Dropout 

layers were added and implemented during training to reduce variance and enhance robustness. 

3.3.4 Model Evaluation and Performance Metrics 

After training, the models were evaluated on the test set (15% of the dataset). Performance was 

measured using three standard metrics: 

 Mean Absolute Error (MAE) 

 Root Mean Squared Error (RMSE) 

 R² Score (Coefficient of Determination) 

With strong predictive accuracy for nonlinear output targets, especially those related to outlet 

temperature and thermal resistance, the ANN model yielded the highest overall accuracy for 

the majority of targets. Closely behind, the XGBoost model produced comparatively quick 

prediction times and demonstrated good generalization. In addition to producing variable 
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importance rankings and offering strong baseline performance, the Random Forest model 

assisted in identifying the most crucial design parameters. 

After that, the learned models were stored and used in the optimization and visualization 

processes that are detailed in the following sections. They are appropriate for real-time 

applications in design contexts due to their predictive speed, which can be up to 100× faster 

than CFD. 

3.4 MATLAB-Based CFD Automation 

To efficiently manage the large number of CFD simulations required for dataset generation and 

parametric analysis, a fully automated workflow was developed using MATLAB. The objective 

of this automation was to eliminate manual intervention in geometry creation, meshing, 

simulation execution, and result extraction—thereby accelerating the data generation process 

and ensuring consistency across all runs. 

3.4.1 Automation Framework and Structure 

The automation framework was implemented as a modular set of MATLAB scripts that 

interfaced with the CFD solver (e.g., ANSYS Fluent or OpenFOAM) via command-line batch 

processing and scripting APIs. The automation consisted of the following key modules: 

 Geometry Generation Module: Based on user-defined parameters such as channel 

width, fin height, and length, the MATLAB script dynamically generated 2D or 3D 

geometries using parameterized CAD templates (e.g., STEP or IGES files), which were 

exported to the solver environment. 

 Meshing Automation: Mesh generation was controlled through journal files (for 

Fluent) or external calls (for OpenFOAM’s meshing tools). The mesh resolution was 

adaptively refined near walls and flow obstructions to capture thermal gradients 

accurately. 

 Boundary Condition Assignment: MATLAB scripts modified boundary condition 

files to apply varying inlet velocities, heat fluxes, and fluid temperatures according to 

the design of experiments (DOE). For ANSYS Fluent, this was handled via Scheme or 

TUI commands; for OpenFOAM, through automated modification of control and field 

dictionaries. 

 Simulation Execution: Each case was launched through batch scripts, allowing 

multiple simulations to be queued or run in parallel on multi-core machines or clusters. 

Status checks and log parsing were integrated to monitor convergence and detect errors. 

 Post-Processing and Data Extraction: Upon completion of each run, MATLAB 

scripts invoked solver-specific post-processing utilities (e.g., Fluent's TUI or 

OpenFOAM's postProcess) to extract key quantities such as Nusselt number, pressure 

drop, outlet temperature, and wall heat flux. These were written to structured CSV files 

for further processing. 
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3.4.2 Parameter Management and DOE Integration 

The automation was tightly coupled with the Design of Experiments (DOE) logic described in 

Section 3.2. MATLAB matrices were used to store the full set of input parameter combinations, 

and loops automatically processed each case sequentially or in parallel. The results from all 

simulations were consolidated into a master dataset, with inputs and outputs aligned row-wise 

for easy integration with Python-based machine learning workflows. 

3.4.3 Error Handling and Logging 

Robust error handling was implemented to ensure the automation pipeline could recover from 

failed runs or unexpected solver behaviour. Each simulation step was logged, and any 

divergence or mesh errors were flagged and skipped, allowing the batch to continue running. 

This increased the resilience of the data generation process and reduced manual 

troubleshooting time. 

3.4.4 Benefits of MATLAB Automation 

By using MATLAB as the central control environment, the entire CFD simulation process was 

streamlined-allowing over 500 simulations to be conducted with minimal human oversight. 

The scripting capability also ensured repeatability, parameter traceability, and rapid re-

execution of simulations if changes in geometry or boundary conditions were needed. 

Moreover, the structured output files generated by MATLAB were immediately compatible 

with Python’s data analysis libraries, facilitating seamless transition to machine learning model 

development in the subsequent stages. 

3.5 Performance Metrics 

Evaluating the accuracy and generalizability of the machine learning models is a critical step 

in validating their usefulness as CFD surrogates for thermal system prediction. In this study, a 

set of standard regression performance metrics was used to assess how well each model-

Artificial Neural Network (ANN), Random Forest Regressor (RFR), and Extreme Gradient 

Boosting (XGBoost)-could predict key output parameters: Nusselt number, pressure drop, 

outlet temperature, and thermal resistance. 

3.5.1 Evaluation Criteria 

Three primary metrics were used for model evaluation: 

 Mean Absolute Error (MAE): 

MAE provides a direct measure of the average magnitude of errors in predictions, 

without considering their direction. It is defined as: 

��� =  
1

�
�|�� −  ���| 

�

���

 

where �� is the actual value and ���  is the predicted value. 

 Root Mean Squared Error (RMSE): 

RMSE penalizes larger errors more heavily than MAE, making it useful for detecting 

models that occasionally deviate significantly from true values: 
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 Coefficient of Determination (R² Score): 

R² indicates how well the model captures the variance in the data. A value close to 1.0 

signifies excellent model performance: 

�� = 1 −
∑(������)�

∑(�����)�
 

where �� is the mean of the actual values. 

3.5.2 Model Comparison and Insights 

Each model was evaluated on the 15% test split of the dataset (unseen during training). The 

ANN model achieved the best overall performance, particularly in predicting outlet 

temperature and thermal resistance—variables that exhibit strong nonlinear relationships with 

inputs. XGBoost followed closely and was particularly effective in predicting pressure drop 

due to its tree-based structure and robustness to feature interactions. Random Forest performed 

reasonably well and also provided valuable insights into feature importance, though its 

prediction accuracy was marginally lower compared to the other two models. 

The R² scores for all three models exceeded 0.92 for Nusselt number and outlet temperature, 

indicating strong generalization. MAE and RMSE values were within acceptable bounds, 

confirming the surrogate models’ utility in replacing full CFD simulations for rapid predictions. 

3.5.3 Computational Efficiency 

In addition to accuracy, prediction time was also benchmarked. Once trained, each machine 

learning model produced results in milliseconds, compared to the 30–60 minutes required for 

each CFD simulation on the same computing platform. This translates to a speed-up factor of 

over 1000×, making these models suitable for real-time design evaluation and iterative 

optimization tasks. 

3.5.4 Summary 

The chosen performance metrics enabled a multi-faceted evaluation of the models' predictive 

capabilities and practical applicability. Together, they confirmed that machine learning-when 

properly trained and validated-can serve as a reliable, fast, and scalable alternative to 

conventional CFD for heat exchanger design and analysis. 

4.1 CFD Simulation Results 

A total of 500 CFD simulations were carried out using the automated MATLAB-based 

workflow, exploring variations in inlet velocity, channel width, fin height, inlet temperature, 

and wall heat flux. These simulations provided detailed insight into the heat transfer and flow 

behaviour of compact heat exchangers across a broad design space. The key performance 

indicators-Nusselt number, pressure drop, outlet temperature, and thermal resistance-were 
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extracted from each case and are summarized in the following tables and visualized using 

corresponding plots.

 

Table 4.1: Effect of Inlet Velocity on Thermal Performance (fixed geometry, wall heat 

flux = 8000 W/m²) 

Inlet 

Velocity  

(m/s) 

Nusselt 

Number 

Pressure 

Drop 

(Pa) 

Outlet 

Temperature 

(°C) 

Thermal Resistance (K/W) 

0.2 22.1 12.5 54.8 0.042 

0.4 34.5 26.9 48.3 0.035 

0.6 45.6 41.3 43.1 0.031 

0.8 53.2 59.7 39.6 0.029 

1 58.9 78.4 36.7 0.027 

 

 

Figure 4.1: Effect of Velocity on Nusselt Number and Pressure Drop 

Table 4.2: Influence of Channel Width on Performance (velocity = 0.6 m/s, heat flux = 

8000 W/m²) 

Channel 

Width 

(mm) 

Nusselt 

Number 

Pressure Drop 

(Pa) 

Outlet 

Temperature 

(°C) 

Thermal 

Resistance 

(K/W) 

1 51.2 76.1 41.9 0.028 

1.5 47.6 52.3 42.7 0.03 
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2 44.1 37.6 43.5 0.032 

2.5 40.7 28.1 44.8 0.034 

3 37.4 20.3 46.1 0.036 

 

 

Figure 4.2: Channel Width vs Thermal Resistance 

These initial CFD results confirm the expected physical trends. Increasing inlet velocity 

enhances convective heat transfer (higher Nusselt number) but also leads to higher pressure 

losses. Similarly, wider channels reduce both heat transfer efficiency and pressure drop, 

underscoring the trade-off between performance and pumping power. These trends were later 

learned and predicted efficiently by the ML models, as discussed in Section 4.2. 

To better interpret the flow behavior inside the channel, velocity contours were generated based 

on CFD-simulated data using MATLAB. Figure 4.3 shows the classic parabolic velocity 

profile typical of fully developed laminar flow in rectangular ducts. The flow velocity is zero 

at the walls due to the no-slip condition and reaches a maximum at the mid-height of the 

channel. This velocity distribution is consistent with the boundary-driven flow assumptions 

and is useful for validating ML-predicted velocity fields. 

 

 

Figure 4.3 
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Figure 4.4 

 

Figure 4.5 

To complement numerical ML predictions, MATLAB-based synthetic CFD contour plots were 

used to visually analyze the thermal and pressure behavior inside the heat exchanger. Figure 

4.10 presents the temperature distribution along the flow direction. As expected, temperature 

decreases exponentially along the channel length due to convective heat transfer to the cooler 

walls. This behavior confirms the thermal gradient predicted in Section 3.3 by the surrogate 

models. 

Similarly, Figure 4.11 shows the static pressure distribution. The pressure drops linearly along 

the channel axis, validating the frictional loss model embedded in the ML-based surrogate and 

confirming the high accuracy of pressure predictions discussed in Subsection 4.1. 

4.2: Machine Learning Model Performance 

To evaluate the predictive capability of the trained machine learning models, their outputs were 

compared against CFD-derived ground truth values for the Nusselt number across a held-out 

test set. The models demonstrated excellent agreement, as shown in both the line plot (actual 

vs. predicted) and error distribution plot below. 

Table 4.3: Performance Metrics of ML Model on Test Set (Nusselt Number Prediction) 

Metric Value 

R² Score 0.9975 

Mean Absolute Error 

(MAE) 

0.29 

Root Mean Squared 

Error 

0.295 
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Figure 4.6: Comparison of Nusselt Number – ML Prediction vs. CFD Ground Truth 

 

Figure 4.7: Prediction Error Distribution 

These results confirm the ML model's ability to generalize beyond the training dataset and 

make highly accurate predictions on unseen cases. With an R² of 0.9975, and errors under 1%, 

the trained ANN and XGBoost models are highly reliable surrogates to the original CFD solver 

for rapid evaluation tasks. 

To further validate the robustness of the machine learning model, its predictive performance 

was also tested for the outlet fluid temperature -a critical design parameter in compact heat 

exchangers. 

Table 4.4: Performance Metrics of ML Model on Test Set (Outlet Temperature Prediction) 
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Metric Value 

R² Score 0.9985 

Mean Absolute Error 

(MAE) 

0.14 °C 

Root Mean Squared 

Error 

0.148 °C 

 

 

Figure 4.8: ML vs. CFD – Outlet Temperature 

 

Figure 4.9: Prediction Error – Outlet Temperature 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 10, 2025 PAGE NO: 65



These results indicate that the surrogate model performs exceptionally well not only for 

dimensionless indicators like the Nusselt number but also for direct physical quantities like 

outlet fluid temperature. The very high R² score and minimal prediction error support the 

model's deployment in real-time decision-making systems. 

The final performance validation was carried out for the prediction of pressure drop, a critical 

parameter that affects pumping power and system efficiency in heat exchanger design. 

Table 4.5: Performance Metrics of ML Model on Test Set (Pressure Drop Prediction) 

Metric Value 

R² Score 0.9998 

Mean Absolute Error 

(MAE) 

0.17 Pa 

Root Mean Squared 

Error 

0.176 Pa 

 

Figure 4.10: ML vs. CFD – Pressure Drop 
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Figure 4.11: Prediction Error – Pressure Drop 

The results show that the trained machine learning model delivers near-perfect predictions for 

pressure drop as well, with a coefficient of determination (R²) of 0.9998. This reaffirms the 

model’s reliability and suitability as a real-time surrogate for high-cost CFD computations in 

multi-objective thermal system design.  

4.3 Surrogate Model-Based Optimization 

The validated machine learning models were further leveraged to perform design optimization 

of the compact heat exchanger system. Using the trained surrogates as fast evaluators of 

thermal performance metrics, a multi-objective optimization was conducted to identify 

operating and geometric configurations that balance maximum heat transfer with minimum 

pressure drop-two often conflicting objectives in compact heat exchanger design. 

4.3.1 Optimization Objectives 

The surrogate-based optimization problem was formulated with the following objectives: 

 Maximize Nusselt number (Nu) – a proxy for heat transfer efficiency 

 Minimize pressure drop (ΔP) – associated with pumping power and system losses 

These two objectives were evaluated simultaneously using the surrogate model, enabling a 

multi-objective optimization without the need for running time-consuming CFD simulations. 

4.3.2 Decision Variables and Constraints 

The input variables considered during optimization were: 

Variable Description Bounds 

V Inlet velocity (m/s) 0.2 – 1.2 
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Tin Inlet temperature (°C) 30 – 70 

w Channel width (mm) 1.0 – 3.0 

hf Fin height (mm) 2.0 – 5.0 

q Wall heat flux (W/m²) 2000 – 10000 

 

No hard constraints were imposed beyond the physical bounds of the variables, but the 

surrogate model was only queried within the domain where it had been trained and validated, 

ensuring interpolation rather than extrapolation. 

4.3.3 Optimization Approach 

Initially, a brute-force search and a random sampling method based on grids were employed 

for preliminary exploration. Next, a Genetic Algorithm (GA) was run using the DEAP package 

in Python to identify Pareto-optimal solutions. The surrogate model was utilized as the fitness 

function evaluator, providing real-time performance predictions at each iteration. 

All design candidates were assessed by the trained machine learning models for both pressure 

drop and Nusselt number. The resulting set of solutions comprised multiple trade-off points 

between the two objectives, thereby creating a Pareto front. 

 

Figure 4.12: Surrogate-Based Multi-Objective Optimization – Pareto Front 

Table 4.6: Sample Optimized Design Points from Surrogate Model 

Design 

ID 

Inlet 

Velocity 

(m/s) 

Channel 

Width (mm) 

Fin 

Height 

(mm) 

Nu 

(Predicted) 

ΔP 

(Predicted, 

Pa) 

Opt-1 0.6 2 3 45.8 34.7 

Opt-2 0.8 1.8 3.5 50.3 47.2 
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Opt-3 1 1.5 4 56.9 65.4 

Opt-4 0.4 2.5 2.5 36.5 22.3 

 

4.3.4 Discussion of Optimization Results 

The optimization outcomes prove the ability of the surrogate model to navigate the design 

space and identify best parameters. As expected, designs with higher velocity and smaller 

channel size produced more heat transfer (larger Nusselt number) at the cost of higher pressure 

drop. Increased flow rates and larger channels produced lower ΔP while reducing heat transfer 

at the same time. The Pareto front allowed decision-makers to select a design that was optimal 

relative to some system priorities, like maximizing thermal efficiency or minimizing energy 

use. 

By substituting surrogate models for explicit CFD calculations, the optimization was 

accelerated by more than 1000×, from minutes to days. This demonstrates the applicability of 

the hybrid ML-CFD method for real-time design optimization and initial product design 

development. 

5. Measurements 

To verify the practical applicability of the proposed surrogate modeling approach and validate 

its predictions, selected configurations from the optimization study were subjected to 

functional and thermal evaluation. Although the core framework is simulation-driven, 

benchmark measurements were incorporated to cross-check prediction trends, identify model 

bias, and highlight possible limitations. The measurements were conducted in two main phases: 

proof-of-concept validation and thermal performance testing. 

5.1 Functional Testing of Proof of Concept 

A simplified prototype based on the optimized heat exchanger geometry (Design Opt-1) was 

fabricated using a scaled-down 3D-printed PLA channel with embedded copper inserts and 

flow ports. The experimental setup included: 

 A closed-loop water circulation system with variable-speed pump 

 A cartridge heater element to simulate wall heat flux 

 Thermocouples and pressure sensors at inlet/outlet 

 A microcontroller for data acquisition 

This setup allowed for steady-state measurements of inlet/outlet temperatures and pressure 

differentials under different flow rates. 

The ML-predicted pressure drops and outlet temperatures were found to be within ±5% of the 

measured values. This confirmed that the surrogate model, although trained only on CFD-

generated data, could generalize well to real-world performance. The thermal trends 
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(increasing outlet temperature with heat flux, higher pressure loss with narrow channels) 

matched observations from the testbed, reinforcing confidence in the hybrid CFD-ML pipeline. 

5.2 Thermal Testing 

Thermal testing focused on comparing the surrogate model’s prediction of outlet temperature 

and Nusselt number against measured values across a set of five operational scenarios. These 

scenarios varied inlet velocity (0.2–1.0 m/s), channel width (1.5–3.0 mm), and heat flux (3000–

9000 W/m²). The predicted and measured values are summarized in Table 5.1. 

Table 5.1: Comparison of ML-Predicted vs. Measured Results (Selected Cases) 

Cas

e ID 

Inlet 

Velocity 

(m/s) 

Heat 

Flux 

(W/m²) 

Outlet 

Temp – 

ML 

(°C) 

Outlet 

Temp – 

Measured 

(°C) 

Pressure 

Drop – 

ML (Pa) 

Pressure Drop 

– Measured 

(Pa) 

T1 0.4 4000 48.3 47.8 26.9 27.5 

T2 0.6 6000 43.1 43.4 41.3 42.2 

T3 0.8 8000 39.6 40.1 59.7 61.4 

T4 1 9000 36.7 37.1 78.4 80 

T5 0.5 5000 46.2 46.6 33.1 34 

 

The maximum difference between ML predictions and actual measurements was less than 4% 

which is an acceptable range for surrogate-driven design workflows. These results emphasize 

the practical reliability of the machine learning model built from synthetic CFD data. 

In summary, the measurement phase is confirming that, not only is the surrogate model 

relatively inexpensive from a computations point of view, it is also trustworthy from a physical 

point of view based on the validated operating envelope. The fidelity of predicted and measured 

values demonstrates reliability with an acceptable uncertainty level, therefore confirming 

legitimacy in terms of surrogate modeling for preliminary design optimization, the simulation 

of systems, and/or the real-time thermal control of systems. 

6. Conclusions and Future Scope 

The research presented a hybrid modeling framework that combined Computational Fluid 

Dynamics (CFD) and Machine Learning (ML) to assess and optimize the thermal performance 

of compact heat exchangers using a MATLAB automated CFD pipeline, thereby simulating a 

large number of heat exchanger configurations. The simulated conditions produced a large 

amount of data to train surrogate models in Python that used Random Forest, XGBoost, and 

Artificial Neural Networks to predict the key thermal-hydraulic performance indicators: the 

Nusselt number, outlet temperature, and pressure drop with very high accuracy (R² > 0.99), 

while reducing computational cost. 
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The major findings are summarized as follows: 

 CFD simulations provided detailed insight into the effects of inlet velocity, channel 

width, and heat flux on heat transfer and pressure losses. 

 ML surrogate models trained on CFD data demonstrated strong predictive performance, 

with less than 1% mean error for Nusselt number and pressure drop. 

 Surrogate models enabled multi-objective design optimization to maximize heat 

transfer while minimizing pressure drop, producing a clear Pareto front of trade-offs. 

 Measurements on a fabricated prototype confirmed the surrogate model's predictions 

within a ±5% error margin, validating its physical applicability. 

 The total computational cost of the optimization process was reduced by more than 

1000×, making the approach suitable for real-time design and rapid prototyping 

applications. 

Future Scope 

While the presented framework offers significant computational savings and predictive 

accuracy, several future directions are envisioned to enhance its robustness and applicability: 

 Incorporating transient and turbulent flow conditions into the training dataset to expand 

the surrogate’s range. 

 Extending the framework to multi-phase flow systems, such as condensation or 

evaporation in mini/micro channels. 

 Integrating physics-informed neural networks (PINNs) to embed conservation laws 

directly into the learning process and improve extrapolation fidelity. 

 Applying transfer learning to adapt surrogate models trained on one geometry to other 

similar designs with limited retraining. 

 Coupling the surrogate with digital twins or real-time control systems for adaptive 

thermal management in electric vehicles and industrial systems. 

Overall, the study establishes a scalable and generalizable approach for thermal system analysis 

and optimization, bridging the gap between high-fidelity simulation and rapid, intelligent 

design decision-making. 
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