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Abstract 

This study presents a comprehensive method for simulating complex multiphase flows through a 

Machine Learning-Enhanced Volume of Fluid (VOF) technique. Our goal is to enhance the 

precision and efficiency of predicting fluid behaviour in multiphase environments by integrating 

traditional computational fluid dynamics (CFD) approaches with machine learning techniques. 

The VOF approach is utilized to track the phase interface, which allows for the analysis of 

volumetric fractions and flow dynamics. Once the primary parameters, such as velocity fields, 

pressure distributions, and phase interfaces, have been visualized in MATLAB, plots are generated. 

A comparison of the performance between this machine learning model and conventional CFD 

methods shows significant improvements. 

Keywords:  Machine Learning, Computational Fluid Dynamics (CFD), Volume of Fluid (VOF) 

Method, Multiphase Flows, MAT Lab. 

1. Introduction 

The necessity for precise accuracy: In addition, CFD frequently faces limitations due to its lack of 

consideration for phase interactions, which can greatly affect the dynamics of multiphase flows. 
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This article presents a survey of recent progress in the simulation of multiphase flows utilizing 

computational fluid dynamics methodologies. The models discussed include continuum models, 

interface tracking models, and hybrid models, among others. 

1.1. Challenges in Multiphase CFD Modelling. 

Traditional CFD techniques pose challenges in accurately simulating multiphase flows due to their 

complex physical behaviours, which include phase transitions, interfacial dynamics, and 

turbulence. A significant difficulty in modelling multiphase flows lies in depicting the interfacial 

boundaries between phases, which can distort, fragment, or merge in an unpredictable manner. 

Furthermore, it usually requires a high spatial and temporal resolution to simulate such 

interactions, resulting in high computational costs. Moreover, the accuracy of conventional CFD 

models is largely dependent on the turbulence modelling approach that might not account for all 

complexities that arise during multi-phase interactions. 

Nonetheless, using empirical models or simplifications in several cases reduces computational 

load at the expense of the fidelity of simulations. For instance, Volume of Fluid (VOF), Euler-

Euler, and Euler-Lagrange frameworks are often used in multiphase CFD simulations but have 

limitations, especially in terms of resolving interfacial phenomena or dealing with large-scale 

turbulent flows. Consequently, there has been an increasing interest in alternative approaches such 

as data-driven models and machine learning techniques that can supplement or enhance 

conventional CFD methods, which are more efficient and accurate than their predecessors. 

1.2. Integration of Machine Learning with CFD. 

In the last few years, machine learning (ML) has shown up as a great tool for enhancing CFD 

simulations, particularly in complex flow scenarios that are difficult for the conventional 

approaches. Unlike the conventional physical models which are limited in their ability to capture 

the underlying patterns, machine learning techniques have the potential to analyse large data sets 

and notice these hidden routines. When pure accurate CFD simulations or experimental data serve 

as a training ground for ML models, they can achieve higher efficiency in predicting flow 

properties, thus decreasing computation cost but not sacrificing accuracy. 

There are several ways in which machine learning can be incorporated into Computational Fluid 

Dynamics (CFD) workflows. One method is to utilize ML models as substitutes for particular 

elements of a CFD simulation, like turbulence closure models or interface tracking algorithms, 

where they may approximate the actions of intricate physical processes. Or else, in case fast 

outcomes are very important, using ML models to speed up the convergence of iterative solvers, 

optimize mesh generation, or make real-time flow predictions is another option. This paper 

investigates how to combine machine learning with CFD in order to tackle some of the major 

issues encountered when simulating multiphase flow, putting special emphasis on enhancing these 

simulations’ accuracy and efficiency. 
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2. Literature Review 

A new area of study, the combination of Computational Fluid Dynamics (CFD) and Machine 

Learning (ML) for modelling complex multiphase flows, has great potential. Even though 

Computational Fluid Dynamics has always been used to simulate fluid behaviour over different 

phases, it often encounters challenges because the governing equations are complicated and 

involve high computational costs. In the past decade, machine learning has become a 

complementary method to CFD, enhancing its ability to predict outcomes and increasing its 

efficiency. This chapter explores the latest advancements in CFD related to multiphase flows and 

considers the integration of machine learning within fluid dynamics. 

data-driven partial differential equations that are solved. Depending on the kind and configuration 
of the available data, we design two types of algorithms: discrete time models and continuous time 
models. The first kind of models create a novel family of data-efficient spatio-temporal function 
approximates, whereas the later type allows the use of implicit Runge–Kutta time stepping 
schemes with an arbitrarily precise number of steps. The utility of the proposed framework is 
demonstrated on a series of classical problems in reaction-diffusion systems, fluids, quantum 
physics, and the propagation of nonlinear shallow-water waves. [1]In this study, we apply our 
advances primarily to two problem classes: data-driven partial differential equation discovery and 
data-driven solution. Depending on the kind and configuration of the accessible data, the latter 
kind allows the use of implicit Runge-Kutta time stepping schemes with an unlimited number of 
stages that are arbitrarily precise. The effectiveness of the proposed framework is demonstrated on 
a series of classical problems in reaction-diffusion systems, fluids, quantum physics, and the 
propagation of nonlinear shallow-water waves. [2] By utilizing machine learning to handle a 
variety of operational scenarios, we present a unique paradigm for processing simulation data that 
eliminates the need for more simulations. The result of this hybrid modelling approach, which 
combines physics-based and data-driven approaches, is what we call a Simulation-based Digital 
Twin. In this work, we argue for CFD in multiphase flow systems, although the concept may be 
applied to any other computational engineering tool. Our evaluation of the computational speedup 
indicates that these two domains together have the potential to enhance the traditional approaches 
utilized in the broad area of computational engineering. [3] Translation, rotation, and vortex testing 
are examples of common test cases used to evaluate the ML function's performance. A comparison 
is made between the ML function's and the VOF method's shortcomings in the volume fraction 
fields. Under optimal circumstances, the ML function accelerates the calculations four times faster 
than the VOF approach. Nonetheless, the VOF approach continues to be superior in terms of 
overall accuracy and robustness. This paper highlights areas that need more improvement while 
demonstrating the promise of using machine learning techniques in multiphase flow simulations. 
[4] Using machine learning to expand simulation databases to enable quick on-field reaction and 
a broader coverage of operational situations, we provide a novel approach to use computational 
physics data. A Simulation Digital Twin (SDT) is the ultimate result of this hybrid modelling 
methodology, which combines data-driven and physics-informed methodologies. Although the 
paradigm is equally relevant to other CAE applications, we discuss its use in the context of 
computational fluid dynamics (CFD) in this study. [5]  This hybrid modelling procedure, which 
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blends data-driven and physics-based methods, produces a digital twin that is based on simulation. 
In this study, we make the case for computational fluid dynamics in multiphase flow systems, even 
if the method may be used with any other computational engineering methodology. Together, these 
two domains have the potential to improve the conventional methods used in the vast field of 
computational engineering, according to our measurement of the computational speedup.  [6] We 
offer a scalable and efficient approach to creating CFD+ML algorithms with Open FOAM and 

Smart Sim, two open source technologies. Scalable data exchange between ML and CFD clients 
is made possible by Smart Sim's Orchestrator, which also greatly streamlines the implementation 
of CFD+ML algorithms. We demonstrate the successful integration of several Open FOAM 
components, such as mesh motion solvers, function objects, and pre/post-processing applications, 
with machine learning using Smart Sim. [7]  We assessed several PIU characteristics and room 
circumstances using CFD models to ascertain the effects of PIU installation on isolation and 
ventilation. We looked at the airflow patterns and particle dispersion from coughing individuals. 
CFD simulation data was used to train machine-learning algorithms in order to assess performance 
and pinpoint crucial factors.  [8] In the past, free boundaries in finite-difference numerical 
simulations have been approximated using a variety of techniques. It explains a straightforward 

yet effective technique based on the idea of a fractional volume of fluid (VOF). It is demonstrated 
that this approach is more adaptable and effective than alternative approaches for intricate free 
boundary setups. A description of SOLA-VOF, an incompressible hydrodynamics algorithm that 
tracks free fluid surfaces using the VOF approach, is provided to demonstrate the methodology.[9] 
Since the advent of vast and diverse data sets in recent years, researchers have been exploring ways 
to systematically feed data into turbulence models in an effort to quantify and minimize model 
uncertainty. This paper examines recent advances in the use of machine learning to enhance 
turbulence models, the bounding uncertainties in RANS models via physical constraints, and the 
use of statistical inference to define model coefficients and assess disagreement. Important ideas, 
successes, and difficulties are covered. One of the main points of this work is that researchers may 
employ data-driven methodologies to develop practical prediction models by using a fundamental 
understanding of turbulence modelling and physical restrictions.[10]The   equations and other 
basic engineering models have historically been calibrated using experimental data and direct 
turbulence simulations. Since the advent of vast and diverse data sets in recent years, researchers 
have been exploring ways to systematically feed data into turbulence models in an effort to 
quantify and minimize model uncertainty. This paper examines recent advances in the use of 
machine learning to enhance turbulence models, the bounding uncertainties in RANS models via 
physical constraints, and the use of statistical inference to define model coefficients and assess 
disagreement. Important ideas, successes, and difficulties are covered. One of the main claims of 
this study is that by using fundamental understanding of physical limits and turbulence modeling 
[11] Without any prior knowledge of the kernel or filtering procedure, the deconvolved field is 

computed. Conceptually, this is comparable to the popular approximation deconvolution methods 
that employ an iterative deconvolution procedure with a predetermined filter shape. We 
demonstrate the remarkable performance of the proposed blind deconvolution network in the a 
priori testing of compressible stratified turbulence, three-dimensional Kolmogorov, and two-
dimensional Kraichnan test cases. Additionally, it shows promise as the basis for a data-driven 
closure for the Navier-Stokes equations that is enhanced by physics.[12]Batches of randomly 
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selected time and spatial points are used to train the neural network. We test the approach by 
solving a class of high-dimensional free boundary PDEs accurately in dimensions up to 200. 
Burgers' problem and a high-dimensional Hamilton–Jacobi–Bellman PDE are also used to test the 
approach. For a continuum with various physical and boundary constraints, the deep learning 
approach approximates the general solution to Burgers' equation (which may be seen as a high-
dimensional space). Since the approach is conceptually related to Galerkin methods, we refer to it 

as a "Deep Galerkin Method (DGM)." Instead of using a linear collection of basis functions to 
approximate the answer, a neural network is employed. We also present a hypothesis on the 
approximation.[13]We also provide an unsplit, second-order volume-of-fluid advection approach 
based on the second-order finite difference method for scalar conservation laws by Bell, Dawson, 
and Shubin. We evaluate our advection approach by simulating various interface shapes 
propagating in two simple incompressible flows and compare the results with the traditional 
second-order, operator-split advection method. Even though both methods are second-order 
correct when the interface is smooth, we find that the unsplit methodology exhibits noticeably 
higher resolution in regions where the interface has discontinuous derivatives, such as at 
corners.[14]The Navier-Stokes equations may be encoded into neural networks using a deep 

learning system that understands physics, regardless of beginning and boundary conditions or 
geometry. We demonstrate HFM by acquiring quantitative data for several physical and biological 
problems for which direct measurements may not be possible. HFM's ability to withstand high 
noise and low resolution in the observation data is essential for potential uses.[15]  

 Even though there have been encouraging advancements, numerous gaps in the literature exist 

which this paper aims at filling. A primary question here is how applicable machine learning 

models are across various flow regimes. The majority of Machine learning models are fitted to a 

particular dataset hence may not work well when applied to other sorts of multiphase flows or 

geometries. Moreover, the issue of interpretability of machine learning models continues to raise 

concern; they are often assumed to be “black boxes” devoid of most traditional physical models’ 

comprehensibility. Development of a more generalizable machine-learning enhanced 

Computational Fluid Dynamics (CFD) framework was done in order to address these gaps and 

improve results interpretability through detailed post-processing using  

2.1. CFD in Modelling of Multiphase Flow 

CFD is widely utilized in the simulation of multiphase flows involving the interaction of two or 

more phases, including gases, liquids, or solids. Previous methods employed in multiphase flow 

simulations are based on models like Euler-Euler, Euler-Lagrange, and Volume of Fluid (VOF). 

These models address the Navier-Stokes equations by assuming that the phases are either 

continuous or dispersed, depending on the physical characteristics of the flow. 

2.1.1. Euler-Euler and Euler-Lagrange Models 

The Euler-Euler model treats both phases as continuous media that can be interpreted, allowing 

for a macroscopic perspective on their interaction, and is suitable for scenarios where both phases 

significantly occupy the space. In contrast, the Euler-Lagrange models consider one of the phases 
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(usually the dispersed phase) as distinct particles while treating the other as a continuum in the 

realm of mechanics. This approach is commonly applied in contexts involving gas-liquid or solid-

liquid flows. While these models offer certain benefits, they encounter challenges such as complex 

computations and difficulties accurately representing phase interactions on a micro-scale. 

2.1.2. Volume of Fluid (VOF) Method 

The Volume of Fluid (VOF) method is another widely used approach for simulating flows 

involving multiple phases. The boundary between two immiscible fluids is monitored using a 

transported equation that represents the volume fraction of each phase. While VOF is effective at 

tracking phase boundaries, it struggles with accurately capturing small surface tensions such as 

droplet coalescence and fragmentation. Additionally, high turbulence or extensive flow fields lead 

to increased computational costs in VOF simulations, limiting their use in real-time applications 

or over large domains. 

The traditional methods have demonstrated their effectiveness for various applications, though 

they often require significant computational resources. This is especially true in the scenario of 

complex currents where multiple phases interact, prompting exploration into alternative 

approaches like machine learning, which may enhance accuracy while minimizing computational 

requirements. 

2.2. Machine Learning Applications in CFD 

 Fluid mechanics   have been using Machine learning especially deep learning to improve CFD 

simulations. This comes from the fact that machine learning models’ ability to detect patterns and 

extract features from large datasets makes them very useful for problems involving high 

dimensionality or non-linearity. With regard to multiphase flows, ML is mostly used in the 

following important areas: 

2.2.1. Data-Driven Surrogate Modelling 

Data-driven surrogate models are a primary method through which machine learning has been 

integrated into computational fluid dynamics (CFD). These models can replace or approximate 

certain elements of a CFD simulation. For example, neural networks and Gaussian process 

regression have been employed to predict outcomes of costly CFD simulations without directly 

solving the relevant physical equations. Typically, these surrogate models are trained on extensive 

datasets of CFD-generated flow fields, enabling them to deliver real-time predictions for various 

flow characteristics such as velocity and pressure distributions. 

Furthermore, surrogate modeling is utilized to enable faster resolution of the Navier-Stokes 

equations (RANS), which present difficulties in simulating turbulent multiphase flows. For 

example, studies conducted by Duraisamy et al. (2019) and Zhu et al. (2020) demonstrated that 

these models can substitute traditional turbulence models in machine learning approaches, 

significantly reducing computational time while maintaining accuracy in simulations. 
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2.2.2. Turbulence Modelling 

CFD continues to consider turbulence modeling one of its most challenging topics, particularly 

concerning multiphase flows. High-fidelity data has been utilized to develop corrections for 

traditional turbulence models through machine learning techniques. To enhance the accuracy of 

CFD simulation predictions, it is feasible to apply supervised learning methods to k-epsilon and 

k-omega models. Research has shown that machine learning can better capture complex turbulent 

structures than conventional techniques, especially in scenarios involving highly random or 

chaotic flow patterns. 

2.2.3. Interface Tracking and Phase Interaction 

One of the applications of ML is to improve the tracking of interfaces in multiphase flows. VOF 

and other traditional methods of interface tracking often require extremely fine meshes, leading to 

high computational costs for accurately capturing the movement of phase boundaries. Besides, 

machine learning models have been trained to predict phase interface positions based on historical 

data, thereby reducing the mesh resolution required while maintaining the fidelity of the 

simulation. These models can dynamically adjust the level of detail needed in different regions of 

the flow, thus allowing for efficient resource allocation during simulations. 

2.3. Combining Machine Learning with CFD: Current Trends 

Currently, it is unbelievable how early the integration of computational fluid dynamics (CFD) with 

machine learning is; however, many people are showing interest in using them in academic or 

industrial applications. For instance, one thing that is noteworthy among researchers is the use of 

machine learning techniques to speed up the convergence process when using iterative solvers; 

this trend is evident when dealing with huge non-linear systems of equations. In addition, since 

machine learning learns from previous iterations and consequently knows the optimal solution 

strategies, it can help reduce the number of iterations needed for a converged solution, thus saving 

on computation time. 

One more upcoming trend utilizes reinforcement learning to enhance the generation of meshes and 

refinement that adapts meshes.  By treating mesh making as a decision-making process, these 

machine learning methods may change the amount of granularity of meshes depending on how the 

flowing field behaves, enabling the use of computing resources in the most effective way. 
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Fig: Multi phase Flow Analysis 

This part describes the method that was taken on in this study to merge ML with CFD in order to 
model intricate multiphase flows. There are three main steps involved: (1)  Setting up and 
conducting CFD simulations for multiphase flow, (2) constructing and training machine learning 
models for improving certain aspects of CFD simulations, and finally (3), visualizing with contours 
and plots generated by MATLAB. The goal of this strategy is to address the computational 
challenges linked to conventional CFD by improving prediction accuracy and accelerating 
computations using machine learning methods. 

3.1. CFD Simulation Setup 

3.1.1. Governing Equations 

The foundation of Computational Fluid Dynamics (CFD) lies in resolving the equations that dictate 

fluid movement. Typically, the Navier-Stokes equations are paired with continuity and momentum 

equations tailored for each phase in multiphase flows. These equations articulate the principles of 

mass, momentum, and energy conservation across all phases, along with the interactions that occur 

between phases, such as drag, lift, or turbulence influences. 

The Navier-Stokes equations for incompressible flow are given by: 

��

��
+ ∇ ⋅ (ρ�) = 0 (Continuity Equation) ………………………(1) 

���

��
+ ∇ ⋅ (ρ��) = −∇� + μ∇�� + � (Momentum Equation)……(2) 

In the case of multiphase flows, these equations are modified along with (a) this is frequently 

linked to the presence of a volume fraction in other phases; they certainly include a specific value 

referred to as a volume fraction (α\alphaα). In practice, the most commonly deployed strategy in 

order to track the interface between various phases is the Volume of Fluid (VOF) strategy. In this 

research, VOF approach has been applied to mimic movement and interaction of different phases 

within the computational domain. 
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The Volume of Fluid (VOF) method is used to track phase interfaces in multiphase flow 

simulations. The transport equation for the phase volume fraction, α\alphaα, can be written as 

��

��
+ ∇ ⋅ (α�) = 0…………………………..(3) 

For incompressible multiphase flows, the momentum equation is written as 

��

��
+ (� ⋅ ∇)� = −

�

�
∇� + ν∇�� + �surface………..(4) 

3.1.2. Domain and Boundary Conditions 

Simulations were done in a 3D computational domain that was made to duplicate a typical 

multiphase flow case, for example, a bubble column or liquid-liquid interaction in a pipe. The 

physical characteristics of usual industrial or environmental applications guided the choice of the 

size of the domain. 

Boundary conditions were specified as follows: 

 Inlet: A velocity inlet boundary condition was applied to introduce one or more phases into 

the domain. The inlet’s motion profile and phase composition may be determined by this 

boundary condition. 

 Outlet: A pressure outlet boundary condition was imposed to allow the phases to exit the 

domain with a specified pressure. 

 Walls: No-slip conditions were applied to the walls, which prevent fluid from moving 

tangentially relative to the surface. 

Structured or unstructured grids were used to generate the mesh for the computational domain 

depending on its geometry. To confirm that mesh resolution does not have a significant impact on 

results, grid independence tests were performed. 

3.1.3. Turbulence Modelling 

Turbulence modelling is vital in capturing the chaotic nature of multiphase flows due to their 

complexity. We used the k-ε model, which is a commonly used two-equation turbulence model 

that provides a reasonable balance between computational cost and accuracy for this research. The 

Realizable k-ε model was adopted because it takes into consideration the anisotropic feature of 

turbulence in multiphase flows. 

The Navier-Stokes equations alongside the turbulence kinetic energy (kkk) and its dissipation rate 

(ϵ\epsilonϵ) equations, which have been solved together with them, are included in this text. As 

can be found in section 5.2, the integration of the machine learning model into the turbulence 

modelling process improved the accuracy of turbulence closure. 

3.2. Machine Learning Model Development 
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3.2.1. Training Data Generation 

To train machine learning models, they need significant amounts of accurate data. In this study, 

the training data was created from multiphase flow CFD simulations, which provided detailed 

information on velocity, pressure, phase volume fractions, and turbulence properties at each time 

step and grid point. 

In order to build an extensive database, several flow configurations were simulated with different 

inlet velocities and phase fractions. These simulations were carried out on a high-performance 

computing cluster so that adequate data could be produced within a short time. The generated 

dataset was partitioned into training, validation, and testing sets to ensure effective generalizations 

of any new models against flow conditions. 

3.2.2. Model Architecture 

For this study, we experimented with multiple   machine learning architectures, including: 

 Artificial Neural Networks (ANNs): Velocity and pressure fields were predicted from 

phase volume fractions, etc., then ANNs proved to be successful in capturing non-linear 

relations in the fluid dynamics data streams. 

 Convolutional Neural Networks (CNNs): The interfaces between phases are predicted in 

their location and movement by applying. They can be considered most appropriate when 

dealing with spatial patterns and  types of images like 2D or 3D fields of velocity or volume 

fraction. 

 Gaussian Process Regression (GPR): Employed as a surrogate model in predicting 

particular flow quantities like pressure drop or interface dynamics as per input conditions. 

Models based on GPR offer an indication of uncertainties, which can be helpful in 

estimating how credible the predictions are. 

3.2.3. Model Training and Validation 

Supervised learning was used to train the machine learning models, where inputs were made up of 

CFD simulation features such as velocity and pressure, as well as volume fraction fields, while 

predicted outputs were related to phase interface location or turbulence characteristics. 

The mean square error (MSE) loss function was utilized during the model training to reduce the 

difference between the predicted and actual fluid flow fields. To adjust the model parameters, 

optimization techniques like Adam and Root Mean Square Propagation (RMS prop) were 

employed, using the gradient derived from the loss function. 

To prevent the models from overfitting significantly, they were trained employing cross-validation 

techniques along with regularization methods like dropout and L2 regularization. Subsequently, 

test sets were utilized to evaluate these models regarding their capacity to predict flow 

characteristics in previously un encountered situations. 
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3.3. MATLAB Post-Processing and Visualization 

The output from both conventional CFD simulations and machine learning-augmented models was 

subjected to post-processing in MATLAB. In this context, visual representations like contours, 

vector plots, and streamlines were generated to analyze velocity fields, phase interfaces, and 

pressure distributions in the flow. 

3.3.1. Contour Plots 

Scalar fields, including velocity magnitude, pressure, and phase volume fractions, were illustrated 

using contour plots. As a result, these plots provided a clear representation of the interactions 

between different phases and how the velocity or pressure fields vary throughout the domain. 

Moreover, the contours highlighted key flow characteristics, such as vortices or regions of high 

shear stress. 

3.3.2. Streamline and Vector Plots 

To showcase both the direction and strength of velocity fields in regions where phases interact, 

vector plots were used. Streamline plots illustrated the trajectories of fluid particles, contributing 

to the understanding of flow patterns within the multiphase system. These visualizations were 

beneficial in comparing the outcomes of machine learning models with those obtained from 

traditional computational fluid dynamics (CFD) simulations. 

3.3.3. Comparison Between ML-Enhanced and Traditional CFD Results 

To conduct parallel evaluations of the results from conventional CFD simulations in comparison 

to those improved by machine learning, MATLAB was utilized. The visual representations 

highlighted the enhanced accuracy of the machine learning models, especially in complex regions, 

such as near phase boundaries or in highly turbulent zones.  

The effortless creation of high-quality figures, which were later incorporated into the results 

section of this paper, was achieved using MATLAB. 

3.4. Evaluation Metrics 

In order to measure how much better the CFD models have become due to the introduction of 

machine learning, the following performance indicators were employed: 

 Root Mean Squared Error (RMSE): Used to evaluate the accuracy of the predicted 

velocity and pressure fields compared to the CFD results. 

 R-squared (R2R^2R2) score: Used to measure the proportion of variance in the data that 

the machine learning model could explain. 
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 Computational Time: This part demonstrates the efficiency gained through ML 

integration by comparing the time taken to carry out simulations with and without machine 

learning. 

With these metrics, machine learning was able to dive deeper into the accuracy and efficiency 

changes. 

3.5. Summary 

The methodology explained here illustrates the efficient incorporation of machine learning in a 

conventional CFD workflow for improving the simulation of intricate multiphase flows. Through 

capitalizing on high-quality CFD data to train machine learning models, we can attain higher 

accuracy in predicting crucial flow characteristics and at the same time, cut down dramatically on 

computational expenses. Post processing with MATLAB guarantees a clear nature of outcomes 

some of which are visualized making it easier understanding how effective this method is. This 

section is divided into subsequent results and analysis derived from this technique. 

4. Results and Discussion 

In this part of the document, we provide an extensive overview and evaluation of the results that 

were gathered from a multiphase flow CFD simulation that utilized machine learning techniques. 

Graphs obtained through MATLAB programming have been used to illustrate significant flow 

characteristics and contrast them with classic CFD findings. Furthermore, it would discuss how 

machine learning affects such results as well as present numerical evaluations of some crucial 

features associated with fluid movement. In certain situations, they are compared with previous 

experiments or analytical results in order to check the precision of a given model. 

4.1 Visual Results in MATLAB-Generated Plots 

The plots that were generated by MATLAB given here show the flow dynamics, phase separation, 

and machine learning predictions in different stages of the simulation process. 

In the Streamline Plot of Velocity Field (Figure 1), fluid flow characteristics are visually depicted 

in detail. Streamlines tell how fluid flows within the domain, revealing strong and weak flow areas 

and circulation or stagnation regions. These areas play a crucial role in interpreting fluid motion, 

assisting in locating places susceptible to instabilities or phase mixing. By showing an immediate 

method for contrasting patterns of flow, the streamline plot, which is vital in conventional CFD 

analysis, continues to be significant within the machine learning-oriented framework. 
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Figure 1: Streamline plot of velocity field 

 

Figure 2: Velocity contours 

The graph of the velocity field contour presented in Figure 2 serves as a complement to the 

streamline plot as it exhibits how velocity varies in the entire domain. The colour contours enable 
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quantitative comparison of flow speeds in different regions. This plot is important for detecting 

areas where the flow may stagnate or reflux with resultant phase separation or mixing possibilities. 

Figure 3 shows how primary and secondary phases are distributed in the volume fraction at the 

last time step of the simulation. Over the course of time, the contour of volume fraction talks about 

phase separation or mixing. It is very important that volume fraction plots are accurate when it 

comes to multiphase flow analysis because they directly indicate whether our numerical methods 

can deal with free   surfaces without introducing too much numerical diffusion or smearing. 

 

Figure 3: Volume fraction at final time step 

4.2 Comparison between Traditional CFD Models and Machine Learning-

Enhanced Models 

In order to understand how CFD could work well together with machine learning, Predictions vs 

Actual Values (Figure 4) shows comparisons between predictions made by the machine learning 

model and actual data obtained from the CFD simulation. Such a presentation offers a measure of 

how successful this AI is at recognizing important elements of flow. When it comes to speed and 

precision of forecasting, a traditional approach to CFD pales in comparison with its machine-

learning counterpart. The machine learning aided model has better performance, particularly in 

areas of high complexity such as phase interfaces or turbulence, where it minimizes the gap 

between the simulated and real data. 
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Figure 4: Predictions and actual values 

In order to juxtapose the functioning of both methods, it is crucial to note cumulative features of 

Velocity Magnitude Contour (Figure 5). By means of conventional CFD models, it is sometimes 

impossible to precisely take into account velocity in such complicated zones like boundary layer 

and phase interface where accuracy needs higher spatial resolution and costs in time consumed by 

computing process. Nevertheless, machine learning enables us to perform this task much faster but 

with about the same precision emphasizing thus the advantages of the improved model. 

 

Figure 5: Velocity fields 

4.3 Quantitative Analysis of Key Parameters 
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Understanding the velocity field, pressure distribution, and volume fractions, among other 
things, is crucial for understanding the behaviour of multiphase flows. 

It can be noted from the Gradient Magnitude of Volume Fraction (Figure 6) that it describes how 

sharp the interface between two phases is. A properly resolved gradient of the volume fraction 

indicates that, at the volumetric transition, the different phases can be differentiated with good 

precision. Here, it is shown that this machine learning model preserves sharpness in its interface 

without excessive numerical diffusion which is seen in most traditional CFD models. This ability 

to accurately model the interface, particularly at regions of high velocity gradients, shows the 

effectiveness of the learning-enhanced model. 

 

Figure 6: Gradient magnitude of volume fraction 

In Volume Fraction with Velocity Field Overlay (Fig 7), we provide here a simultaneous image of 

a phase distribution and an underlying velocity field. This plot illustrates how fluid flows interact 

with phase interfaces, which is especially important in multiphase flow systems. The velocity field 

overlay shows how phase interface movement and deformation are influenced by the flow. 

Therefore, it is a vital tool for examining complex flow settings since models augmented by 

machine learning predict fluid-structure interaction more efficiently. 
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Figure 7: Volume fraction with velocity field overlay 

4.4 Comparison with Experimental or Analytical Data 

Overall, the outcomes of the CFD algorithms that have been enhanced with machine learning were 

compared with those gathered from experiments and analytical solutions where applicable. In 

many cases such as here the results predicted by the machine learning-enhanced model closely 

agree with those for actual multiphase flow experiments. The underlying phase interface is located 

at a volume fraction of 0.5 which generally acts as a boundary between the two phases (Figure 8). 

These contours are compared against those generated through different analytical phase separation 

models; on this ground, we see that in terms of interface sharpening, they capitalize on fluid 

mechanics simulation more than their traditional counterparts do. Other researchers e.g., those 

involved in the study of similar multiphase flow regimes have made observations that concur with 

the findings summarized above. 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 6, 2025 PAGE NO: 729



 

Figure 8: Interface contour 

4.5 Impact of Machine Learning 

By incorporating machine learning into CFD simulations, it has become possible to predict flow 

behaviours with more accuracy at a lower computational cost. Fig. 4 shows an comparison between 

predicted and actual values, which reflects the machine learning model’s ability to learn from 

simulation data and estimate flow parameters’ values accurately in areas that have not been 

observed before. In multiphase systems where nonlinear behaviours and turbulent effects usually 

occur, this tool can be applied more successfully than traditional CFD solvers because of reduced 

computational costs associated with it. In addition, the convergence of the machine learning model 

necessitates fewer repetitions, thus enabling quicker simulations, especially when multiple time 

intervals or high grid resolutions are required. This acceleration is especially important in large-

scale industrial applications that require real-time simulations. 

8.  A comparison between the Traditional CFD and Machine Learning-

Enhanced CFD  analysis. 

Table .1 

Parameter Traditional CFD Machine Learning-Enhanced 

CFD 

Mean Squared Error 

(MSE) 

0.008 0.002 

Computational Time (s) 1500 800 
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Interface Sharpness (α = 

0.5) 

Moderate High 

 

For the comparison of Traditional CFD and Machine Learning-Enhanced CFD analysis compared, 

Traditional CFD and Machine Learning Enhanced CFD compared. Table 1 shows the mean 

sequence Error in Traditional Results 0.008 and Machine – Learning Enhanced CFD 0.002. and 

then comparison   time is taking Traditional times 1500sec and Machine learning time 

800sec.interface sharpness traditional CFD in moderate and Machine Learning high. 

4.6 Uncertainty Quantification 

To ensure the robustness and accuracy of the machine learning-enhanced model, it is essential to 

quantify uncertainty. This study examined uncertainty by comparing the predictions made by 

machine learning with results from traditional Computational Fluid Dynamics (CFD) and 

experimental data. The discrepancies between predicted and actual results were measured, 

indicating that the machine learning-enhanced model remains within a suitable error range. 

Table 1.2  

Test Condition Error Margin (±) Confidence Interval 

(95%) 

Baseline 0.003 [0.001, 0.005] 

Perturbed Data Set (±5%) 0.005 [0.002, 0.007] 

 

 

In regions of high uncertainty, particularly at sudden phase boundaries or in zones with significant 

turbulence, additional training data could enhance the model’s performance. However, it has been 

demonstrated that the uncertainty within the machine learning model remains lower than that of 

traditional CFD methods, owing to its ability to learn from large datasets and adapt to complex 

flow dynamics. 

5. Conclusion 

To enhance the Computational Fluid Dynamics (CFD) simulations of multiphase flows, this study 

presents a novel approach utilizing machine learning techniques. Given the complexity of phase 

interfaces and turbulent flow regimes, merging machine learning with conventional CFD methods 

has resulted in improved precision, greater computational efficiency, and advanced capabilities in 

managing these complex flows. Visualizations generated from MATLAB demonstrate that 
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machine learning can effectively forecast critical flow parameters while significantly lowering the 

computational costs compared to more precise simulations. 

5.1 Key Findings 

The following key findings were made based on the simulation and analysis of the results: 

1. Improved Predictive Precision: In relation to actual outcomes, the machine learning 

model demonstrated the ability to understand complex flow behaviours, leading to 

enhanced simulation precision. This was especially noticeable in areas with sharp gradients 

or complex phase interactions, where conventional CFD methods find it challenging to 

uphold accuracy without using finer grid resolutions. 

2. Decrease in Computational Time: One significant advantage of integrating machine 

learning (ML) into computational fluid dynamics (CFD) simulations is the reduction in 

computation time. Traditional CFD models require extensive mesh generation, high grid 

resolution, and numerous iterations to accurately characterize multiphase interactions and 

turbulent flow conditions. A machine learning model that has been trained on CFD data 

can achieve accurate predictions of flow parameters in just a few iterations, significantly 

accelerating simulation without compromising accuracy. This remarkable decrease in 

computational resources makes this approach highly suitable for large-scale and real-time 

industrial applications. 

1. Improved Interface Tracking: With the Volume of Fluid (VOF) method, the machine 

learning-enhanced model exhibited better capability in tracking phase interfaces than 

traditional models. The interface contour was sharper, especially in the case of a volume 

fraction equal to 0.5 compared with conventional CFD results. Using this combination, the 

machine learning algorithm could treat complicated interactions among phases much easier 

by velocity fields and phase distribution but resulting in more precise and robust 

simulations. 

2. Versatility in Handling Complex Flow Dynamics: The model was shown to be 

competent in addressing intricate flow conditions, such as turbulent currents, recirculation 

areas, and areas with high-speed gradients. According to the streamline and velocity 

magnitude graphs, one can say that the ML-based model has captured large scale flow 

patterns as well as smaller, more complicated ones. This flexibility makes it possible for 

this model to be utilized in various multiphase flow situations ranging from industrial 

operations to environmental modelling. 

3. Successful Integration with MATLAB: By utilizing MATLAB for both CFF simulations 

and machine learning implementations experts managed to ensure a seamless flow of 

workflows during the analysis of multiphase flow data. The robust visualization tools in 

MATLAB made it possible to generate high-quality contour plots, streamline plots and 

comparative analyses that effectively showed how well the model works. This also shows 
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that it would be a good platform for future research and practical applications since one 

can integrate machine learning algorithms into its environment easily. 

5.2 Implications for Future Research 

The implications of this study are huge for the future of CFD simulations, especially 

concerning multiphase flows. Incorporating machine learning into CFD workflows presents 

several research gaps and real-life applications: 

 Application to Larger and More Complex Domains: Nonetheless, although the present 

research was centred around a precise case of multiphase flow, this augmentation through 

machine learning can be expanded to other larger and more complex scenarios like those 

found in industrial reactors, oceanic flows, and atmosphere modelling. The decrease in the 

cost of computation will feel even more necessary for simulations involving millions of 

grid points or time-dependent systems with high dimensions. 

 Adaptive Learning for Real-Time Simulations: To promote the adaptive ability of 

machine learning   modes during simulation, adaptive learning techniques can be 

entertained. This is specifically useful for simulations that fall under real-time prediction, 

like process control or environmental monitoring. 

 Hybrid Models for Greater Accuracy: When machine learning is combined with other 

numerical methods, it may be possible to conduct highly accurate and efficient simulations. 

Hybrid models that couple machine learning with finite element or finite volume methods 

may provide an optimal trade-off between accuracy and computational speed, especially 

for highly nonlinear or chaotic processes. 

 Uncertainty Quantification in Machine Learning Models: Although basic uncertainty 

analysis was included in this study, the model's robustness and reliability can be further 

enhanced with advanced methods of uncertainty quantification in machine learning 

predictions. This is particularly important in safety-critical areas like aerospace or 

biomedical engineering, where inaccurate forecasts can have dire consequences. 

5.3 Practical Applications 

The method proposed in this research has numerous real-world uses in various sectors and 

disciplines of inquiry. Below are some of the possible uses: 

 Oil and Gas Industry: Multiphase flows are common in pipelines, where oil, gas, and 

water interact in complex ways. Machine learning enhanced CFD could be utilized for 

pipeline flow optimization, detection of possible phase separation problems or 

improvement in separator designs. 

 Chemical Process Engineering: Optimizing reactions, improving yields and minimizing 

energy usage depends greatly on the accurate simulation of multiphase flows in chemical 
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reactors. In order to lessen the computational effort involved in carrying out high-fidelity 

simulations, the methods that have been devised in this research may be useful for 

designing reactors which are more efficient. 

 Environmental Simulations: The method for incorporating machine learning techniques 

can be applied to the simulations of ecosystems describing pollutants' behaviour in terms 

of air or water dispersal. Predictive capabilities about fluid movements despite their 

intricate nature requiring fewer computational tools make this technique very appropriate 

for big environmental models. 

 Biomedical Engineering: In biomedical engineering, multiphase CFD models are applied 

to simulate blood flow, respiratory systems and drug delivery mechanisms. Machine 

learning-enhanced models could improve the accuracy and speed of these simulations 

making them more applicable for clinical use. 

5.4 Limitations and Challenges 

There exist several limitations and challenges that ought to be resolved in further study, taking into 

consideration that the findings of this research are auspicious: 

 Training Data Dependence: The performance of the machine learning model is highly 

reliant on how good and abundant the data used for training is insufficient or poorly 

representative data may lead to inaccurate predictions. Future work could focus on 

optimizing the training dataset to ensure it covers a wide range of flow scenarios. 

 Generalization to Other Flow Types: While the machine learning-enhanced model 

performed well for the specific multiphase flow studied here, its generalizability to other 

types of flows (e.g., compressible flows or highly turbulent regimes) remains to be tested. 

Integration with Other Numerical Methods: While MATLAB was used as the primary 
platform for this study, integrating machine learning with more specialized CFD software or 
numerical methods may require more complications. However, a possible solution can be found 
by considering the extension of the existing capabilities of other software applications to this 
tool. 

5.5 Final Thoughts 

To sum up, integrating machine learning with computational fluid dynamics (CFD) provides an 

innovative way of simulating difficult multiphase flows. Newly designed models improved 

through machine learning have made them different from what they used to be in terms of better 

prediction ability and lesser need for more computing power hence, reducing the time generally 

taken during simulations. This development is expected to have a huge effect on fields that involve 

the use of high-precision flow simulation such as multiphase liquid dynamics in the future 

incorporating advanced learning models based on artificial intelligence (AI). 
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Nomenclature: 

h          Heat transfer co-efficient w/m2-℃  

α         volume fraction of the fluid phase. 

u         velocity vector of the fluid. 

C        Specific heat capacity, J/kg-°C  

As      surface area heat transfer in m2 

ρ       density. 

u      velocity vector.  

p       pressure.  

μ      dynamic viscosity. 

F      represents body forces such as gravity. 

ρ      density. 

u      velocity vector.  

p      pressure.  

μ      dynamic viscosity. 

F      represents body forces such as gravity. 

u     maximum fluid velocity. 

Δx     grid spacing. 

U      Velocity m/s. 

α      Fluid phase volume fraction. 

U     Velocity components in x directions. 

V     Velocity components in y directions. 

Pa     Pressure distribution in the flow  

T     Time increment used in simulations in sec 

ρ      density  

u      velocity vector  
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p      pressure 

 μ     dynamic viscosity  

F      represents body forces such as gravity. 
 

 

Acronyms 

CFD         Computational Fluid Dynamics. 

VOF          Volume of Fluid. 

ML             Machine Learning  

MAT           Matrices 

RANS           Reynolds-averaged Navier-Stokes. 

SDT            Simulation Digital Twin. 

MSE            Mean Square Error. 

ANN           Artificial Neural Networks.  

CNN       Convolutional Neural Networks. 

GPR       Gaussian Process Regression. 

MSE           Mean square error. 

RMSprop    Root Mean Square Propagation 

RMSE       Root Mean Squared Error. 

DGM         Deep Galerkin Method. 

ANN          Artificial Neural Networks.  

CNN      Convolutional Neural Networks. 

GPR      Gaussian Process Regression. 

MSE          mean square error. 

RMSprop  Root Mean Square Propagation 

RMSE     Root Mean Squared Error. 

VOF         Volume Fraction 

CFX         Computational Fluid Dynamics program. 
BHM        Bottom Heated Mode. 
CHE         critical Heat Flux. 
DGM        Deep Galerkin Method
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