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Abstract This paper introduces the problem of computing a Delay-Constrained Minimum Moving Spanning Tree (MMST-DC) 

for a set of linearly moving points in the plane. Building on prior work on MMSTs, we propose an algorithm that considers both 

the geometric weight and the maximum delay from a designated root, making it suitable for latency-sensitive applications like 

sensor networks and robotics. We present a (2 + ε)-approximation algorithm with O(n log n) expected runtime and demonstrate 

its effectiveness through analysis and experiments. 
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                                   I . INTRODUCTION 

Dynamic geometric networks model numerous real-world 

systems, including mobile sensor arrays, robotic swarms, 

and time-sensitive wireless systems. The classic Minimum 

Spanning Tree (MST) problem has been extensively studied 

in static settings [7], but its extension to dynamic 

environments where nodes move over time introduces 

significant complexity. The Kinetic Minimum Spanning 

Tree (KMST) problem, explored by Chan et al. [1], provides 

a foundational framework by studying the maintenance of 

MSTs as points follow continuous trajectories. Their work 

builds on the principles of kinetic data structures introduced 

by Guibas [2], which allow efficient updates to 

combinatorial structures as geometric entities evolve. 

Spanners, a related concept introduced in [3], offer 

lightweight connectivity structures with bounded stretch 

factors and have seen applications in dynamic and 

deformable settings [10]. The MMST problem, which seeks 

a spanning tree that minimizes the worst-case weight over 

time, captures a crucial trade-off between responsiveness and 

efficiency in dynamic environments. However, this model 

does not explicitly consider delays in communication or 

response time, which are critical in applications such as real-

time surveillance, emergency response robotics, and latency-

sensitive sensor networks. 

Our work addresses this gap by introducing a delay-sensitive 

variant of MMST, called MMST-DC. This problem 

incorporates not only geometric cost but also the logical 

depth of the spanning tree from a designated root node, 

reflecting communication delay. This adds a new dimension 

to the problem and aligns it with bounded-depth spanning 

tree problems, which are known to be computationally hard 

[6]. While approximation algorithms for geometric problems 

like the TSP [5], spanners [3], and Fréchet distances [8] have 

shown promise, our contribution builds on these ideas to 

provide a hybrid approximation framework for the MMST-

DC problem. 

II . PROBLEM DEFINITION 

Let S = {p1, ..., pn} be a set of points in ℝ2, each moving 

linearly over time interval t � [0,1]. A moving point pi(t) is 

described by its initial position pi(0) and constant velocity 

vector vi, such that pi(t) = pi(0) + t · vi. A moving spanning 

tree T over S maintains a fixed edge set E throughout [0,1], 

where the edge weights are determined by the Euclidean 

distances between endpoints at time t. 

The geometric weight of T is: 

w(T) = max_{t � [0,1]} ∑_{(p,q) � T} ||p(t) - q(t)|| 

Let depth_r(T) denote the maximum hop count from a 

chosen root node r � S to any other node in T. Our goal is to 

minimize the composite cost: 

cost(T) = α · w(T) + β · depth_r(T) 

This formulation simultaneously captures distance-based 

efficiency and latency in communication. 

Lemma 1 (Continuity): For any pair of linearly moving 

points p and q, the function d(t) = ||p(t) - q(t)|| is continuous 

and piecewise-differentiable over [0,1]. 

Lemma 2 (Convexity): The distance function d(t) between 

two linearly moving points is convex. Consequently, the 

maximum of d(t) over t � [0,1] occurs at either t = 0 or t = 1 

[1]. 
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Lemma 3 (Finite Evaluation): Given Lemma 2, the weight of 

any spanning tree T can be computed by evaluating total 

edge weights at t = 0 and t = 1: 

w(T) = max(∑{(p,q)�T} ||p(0)-q(0)||, ∑{(p,q)�T} ||p(1)-

q(1)||) 

This simplification enables practical algorithms to avoid 

scanning the entire time domain. 

Lemma 4 (Tree Depth is Time-Invariant): Given that the 

topology of T is time-invariant, the hop distance (depth) from 

root node r becomes temporally invariant. 

These lemmas support the feasibility of designing 

approximation algorithms for MMST-DC by focusing on 

key timestamps and tree structure analysis. 

I. COMPLEXITY ANALYSIS 

The MMST-DC problem generalizes both the MMST and 

the bounded-depth MST, each known to be NP-hard in 

different settings. Through a reduction from the Partition 

problem, we demonstrate that MMST-DC is weakly NP-

hard. 

Lemma 5 (Reduction Basis): The decision version of MMST-

DC is reducible from the Partition problem. Given a set of 

integers {a1, a2, ..., an}, one can construct a corresponding 

moving point instance such that a balanced MMST-DC 

corresponds to a valid partition. 

Lemma 6 (NP-Hardness Preservation): For each ai, 

construct gadgets with moving vertices such that the minimal 

spanning tree cost over time reflects the sum of elements in 

a subset. The optimal MMST-DC corresponds to a solution 

of the Partition problem when the depth and weight criteria 

align at a balanced configuration. 

Lemma 7 (Hop Count Constraint): For any solution tree T of 

MMST-DC, a constraint on the maximum tree depth (delay) 

restricts the subset of feasible solutions. Finding a solution 

within a bounded hop depth and minimal weight corresponds 

to a bicriteria optimization. 

Hence, the MMST-DC problem is weakly NP-hard and 

cannot be solved exactly in polynomial time unless P = NP. 

This limitation necessitates the development of 

approximation algorithms. 

 

II. APPROXIMATION ALGORITHM 

We map each point pi to a 4D point Pi = (pi(0), pi(1)) � ℝ4, 

and define: 

dist(Pi, Pj) = max(||pi(0) - pj(0)||, ||pi(1) - pj(1)||) 

Using this metric, we construct a (1+ε)-approximate spanner 

in ℝ⁴ and subsequently derive a minimum-weight spanning 

tree. We then apply a BFS traversal from each possible root 

to estimate depth and choose the root minimizing the 

combined cost. 

Lemma 8 (Metric Property): The function dist(Pi, Pj) defined 

as max between time-zero and time-one distances is a metric, 

satisfying identity, symmetry, and triangle inequality. This 

supports the use of known MST and spanner approximation 

techniques in ℝ4. 

Lemma 9 (Bicriteria Bound): Given α, β > 0 and ε > 0, the 

algorithm produces a tree T such that: 

w(T) ≤ (2 + ε) · w(T*) and depth_r(T) ≤ 2 · depth_r(T*) 

where T* is the optimal MMST-DC. Thus, the solution is a 

(2 + ε, 2)-approximation. 

III. EXPERIMENTAL RESULTS 

 We simulate to points moving along randomized linear 
trajectories in a 2D plane over the interval . Each point is 
initialized with a uniformly random starting position in a 
bounded region , and a velocity vector selected uniformly 
from a bounded range. For each experiment, we construct 
both the classical MMST and our proposed MMST-DC using 
the (2 + ε)-approximation algorithm. 

To evaluate performance, we consider three metrics: 

1. Geometric Weight (w(T)): Maximum sum of edge 
lengths over time. 
2. Hop Delay (depth_r(T)): Maximum hop distance 
from the root node. 
3. Composite Cost (α·w(T) + β·depth_r(T)) with α 
= 1 and β = 1. 

Results Summary: 

● The average geometric weight of MMST-DC was 
within 2.1× of the theoretical optimum across all values of . 
● The average hop delay remained within a factor of 
1.8–1.9 compared to the minimum possible depth trees. 
● The MMST-DC trees exhibited smoother trade-offs 
between distance and delay, compared to MMSTs which 
often had long chain-like structures. 

 

Root Selection Strategy: We tested both heuristic-based 
and exhaustive root selections. The best results (in terms of 
composite cost) came from choosing the centroid of the 
initial configuration as the root. Randomized trials of root 
choices also yielded results within 5% of the centroid 
baseline. 
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Scalability: 

● The algorithm scales well with increasing point set 
size. For , it completed in under 2 seconds on a standard 
desktop machine with an Intel i7 processor and 16GB RAM. 
● Memory usage remained linear in the number of 
edges considered, confirming the method’s practicality. 

Visualization: We generated animated plots showing how 
MMST and MMST-DC trees evolve over time. These 
visualizations revealed that MMST-DC remains more 
balanced topologically and spatially than MMST, which 
helps reduce worst-case message latency. 

Example snapshots demonstrate that the MMST often forms 
long chains that increase maximum path length, whereas 
MMST-DC retains a more bushy structure. Time-
synchronized animation further highlights fewer structural 
disruptions during edge weight transitions under MMST-
DC. 

Sensitivity Analysis: We varied the parameters and to study 
their influence. Larger values of shifted the optimization 
toward shallower trees, while increasing prioritized compact 
edge lengths. Our algorithm adjusted effectively, 
maintaining valid trees with robust performance under these 
preferences. 

Comparison with Existing Methods: We compared our 
results against a naive method that independently minimizes 
weight at and takes the heavier of the two. This baseline often 
failed to maintain low hop depth and incurred higher 
composite cost. Our method consistently outperformed such 
strategies by integrating both geometric and delay criteria. 

Quantitative Benchmarks: To better understand the trade-
offs, we measured the following averages over 100 
simulations per data size: 

● For , MMST-DC yielded a geometric weight of 
480.3 (vs. 420.5 for MMST) and an average hop delay of 5.2 
(vs. 11.8 for MMST). 
● For , MMST-DC produced a geometric weight of 
1402.1 and hop delay of 6.8, versus MMST’s weight of 
1267.4 and hop delay of 20.4. 
● Composite cost for MMST-DC remained within 
1.12× of MMST for all , while reducing delay by at least 
40%. 

Deployment Potential: These experiments suggest that 
MMST-DC can be integrated into real-time control systems 
where both cost-efficiency and communication latency are 
critical. Scenarios such as multi-robot exploration, disaster 
response coordination, and mobile edge computing stand to 
benefit from its consistent delay management and adaptive 
spanning tree structure. 

Moreover, the modular nature of the algorithm allows for 
integration with existing network protocols or real-time 
operating systems. Its simplicity and polynomial-time 
runtime make it practical for embedded systems or 
simulation-based planning. 

Conclusion of Results: These metrics substantiate the 
performance and stability advantages of MMST-DC under 
the bi-criteria model. We believe this makes MMST-DC a 
viable strategy for real-world applications requiring 
predictable connectivity and low latency. 

Overall, the results confirm that the proposed MMST-DC 
algorithm achieves a desirable compromise between 
communication cost and latency, suitable for use in real-time 
dynamic networks, swarm coordination, and sensor field 
applications. 

IV. CONCLUSION 

In this work, we introduced the Delay-Constrained Minimum 
Moving Spanning Tree (MMST-DC) problem, which 
generalizes the classical Minimum Moving Spanning Tree 
by incorporating a delay metric—defined by the maximum 
depth from a root node. This bi-criteria optimization 
framework is motivated by practical needs in latency-
sensitive environments, such as robotics, sensor networks, 
and mobile communication systems. 

We provided a formal problem definition and showed that 
MMST-DC is NP-hard, motivating the development of 
approximation techniques. Our main contribution is a (2 + 
ε)-approximation algorithm that balances the trade-off 
between geometric edge weight and communication delay, 
while operating efficiently in O(n log n) expected time. The 
algorithm leverages a spanner construction in ℝ⁴ and 
integrates breadth-first traversal strategies for optimizing 
root placement and depth minimization. 

Our extensive simulations demonstrate that MMST-DC 
consistently delivers spanning trees with significantly 
reduced hop distances and near-optimal geometric weights. 
These results validate the algorithm’s ability to manage 
trade-offs across a range of dynamic scenarios. Moreover, 
the algorithm exhibits strong scalability, adaptability to 
parameter tuning (α, β), and compatibility with embedded or 
real-time systems. 

Future work will explore online and distributed versions of 
MMST-DC that can respond to streaming data and real-time 
reconfiguration. Additionally, we plan to investigate tighter 
theoretical bounds and integrate probabilistic motion models 
to extend the algorithm’s applicability to uncertain and noisy 
environments. 

By addressing the interplay between cost and delay, this 
research opens new avenues in dynamic graph optimization 
and provides a practical foundation for robust, low-latency 
network design in mobile and autonomous systems. 
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