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Abstract 

The technology of electroencephalography (EEG) sensors has transformed the way we 
understand the functionality of the brain and has opened up new opportunities in neuroscience, 
clinical diagnosis, and human-computer interaction. This paper provides a thorough overview 
of EEG sensor technology, including its fundamental principles, technological evolution, 
current applications, and future advancement. We explore the different types of EEG sensors, 
signal processing techniques, and rapidly emerging innovations that are changing the field. The 
paper also discusses current challenges and limitations, highlighting promising developments 
in wireless, wearable, and high-density EEG systems. Recent developments in artificial 
intelligence and machine learning have improved EEG signal processing capabilities, allowing 
for more precise diagnosis and new applications in brain-computer interfaces and cognitive 
assessment. 

Keywords: EEG sensor, Brain-Computer Interfaces, Epilepsy, Artificial Intelligence and 
Machine Learning 

Introduction 

The human brain produces electrical complexities that can be measured and interpreted to 
comprehend the neurological behavior, even to diagnose some medical conditions, and to 
devise new technologies. One of the most significant non-invasive techniques of recording this 
electrical activity [8] is electroencephalography (EEG). EEG was discovered in 1924 by Hans 
Berger, who used simple analog recordings of brain activity. EEG has now advanced to refined 
digital recording technology that allows real-time analysis and wireless transmission. 

EEG monitors and identifies electrical patterns [2], [5] created by coordinated 
neurocommunication in the brain cortex. Such signals, which are measured in microvolts, 
provide valuable information about the brain’s state, cognition, and neurological conditions. 
The technology's non-invasive nature, comparably low cost, and excellent time resolution 
make it particularly useful in clinical and research settings, and cognitive science. 

2. Fundamental Principles of EEG 

2.1 Neurophysiological Basis 
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The EEG signals are generated by the pyramidal cells of the cerebral cortex through 
postsynaptic potentials. Synchronous activation of thousands of neurons generates electrical 
fields that can be measured using sensors on the scalp. These signals typically have an 
amplitude of 10 to 100 microvolts and a frequency of 0.5 to 100 Hz. The brain's electrical 
response is usually divided into various frequency bands: 

 Delta (0.5–4 Hz): Linked to deep sleep and unconsciousness 
 Theta (4–8 Hz): This is linked to memory formation, meditation, and sleepiness. 
 Alpha (8-13 Hz): Present in a relaxed, awake state with the eyes closed 
 Beta (13-30 Hz): Connected with active thought and concentration 
 Gamma (30-100 Hz): Relevant for high-level cognitive processing 

2.2 Signal Generation and Propagation 

Electrical signals generated by the neural activity must pass through several layers of tissue 
before the sensors can detect it on the scalp. The white matter, gray matter, skull, scalp, and 
cerebrospinal fluid are all involved in this process. The various layers, superimposed with 
different signal amplitudes and frequency content, have different electrical characteristics. 
Skull, in particular, is a type of low-pass filter that strongly attenuates the high-frequency 
aspects of the signal and suppresses signal amplitude by about 10-fold. 

3. Classifications of EEG Sensor Types 

EEG sensors (electrodes) can be classified in several ways based on construction, interface, 
and technology. The three main categories of EEG electrodes are wet electrodes, semi-dry 
electrodes, and dry electrodes. For wet electrodes to make good skin contact, a conductive 
medium, such as electrolyte solution or conductive gel, is necessary. Semi-dry electrodes are 
based on internal reservoirs or absorbent materials that supply trace amounts of electrolyte 
solution to maintain contact quality. Dry electrodes rely on electrode material and design to 
come into direct contact with the skin; they lack a conductive medium. 
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Type Sub-Types Key 
Materials 

Design/Interface 
Features 

Advantages Limitations 

Wet 
Electrodes 

N/A 
Ag/AgCl with 
conductive 
gel or paste 

Requires gel to 
fill scalp gaps 
and reduce 
impedance 

- Gold standard 
in clinical use- 
Low electrode–
skin 
impedance- 
High signal 
quality 

- Gel dries or 
leaks over 
time- Causes 
skin irritation 
or allergies- 
Not ideal for 
long-term or 
mobile use 

Semi-Dry 
Electrodes 

1. 
Reservoir-
based 

PU, porous 
Ti, cotton, 
sponge, 
ceramics 

Store and release 
a small amount of 
electrolyte using 
compression or 
capillarity 

- Moderate 
impedance- 
More 
comfortable 
than wet 
electrodes- 
Less skin 
irritation 

- Limited 
electrolyte 
control- Short 
lifespan due to 
reservoir 
deformation 

 
2. Solid 
hydrogel-
based 

Hydrogel 
(e.g., 
PAAM/PVA), 
ionic gel 

No external 
liquid; provides 
continuous 
moisturizing and 
conductivity 
through water 
retention 

- Good skin 
adhesion- 
Biocompatible- 
Flexible- No 
leakage 

- Moisture 
evaporation 
over time- Still 
dependent on 
internal 
electrolyte 

Dry 
Electrodes 

1. Micro-
needle 

Silicon, 
metals (Ti, Ni, 
SS), polymers 
(SU-8, PLGA, 
PDMS), 
PEDOT/PSS 
coatings 

Penetrate stratum 
corneum for low 
impedance and 
high stability 

- Low contact 
impedance- 
Stable signal- 
Ideal for long-
term 
monitoring 

- Invasive- 
Cross-infection 
risk- Not ideal 
for hairy 
regions 

 
2. Pointed 
(sharp-tip) 

Metals, 
polymers, 
conductive 
inks (Ag, Au, 
CNT), 
composites 

Claw, brush, 
columnar, arch, 
spring-loaded 
tips to push 
through hair and 
contact scalp 

- Easy scalp 
contact- 
Reusable- 
Good for 
mobile use 

- High 
impedance- 
Sensitive to 
movement- 
Discomfort 
over long 
periods 

 
3. Fabric 
electrodes 

Conductive 
threads (Ag, 
carbon), 
graphene, 
PEDOT/PSS, 
foam 

Textile-based; 
integrated into 
headgear or 
garments 

- Highly 
wearable- 
Lightweight- 
Comfortable- 
Washable 
(limited) 

- Low 
durability- 
High motion 
artifacts- 
Difficult 
contact in hairy 
areas 

 4. Ear-EEG 

Conductive 
ink, Ag/AgCl, 
CNT/PDMS, 
memory foam 

Placed around or 
in the ear (e.g., 
cEEGrid, in-ear 
plugs) 

- Non-hairy 
region- 
Comfortable- 

- Limited 
spatial 
resolution- 
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Good motion 
resistance 

Sensitive to 
placement fit 

 

5. 
Capacitive 
(Non-
contact) 

CNT/aPDMS, 
ceramic, 
foam, PCB-
based 

Capacitively 
coupled; no 
direct contact; 
signal captured 
via air/hair 
interface 

- High safety- 
No gel- No 
skin irritation- 
Reusable 

- Very high 
impedance- 
Sensitive to 
motion and gap 
variability 

 Innovative Electrode Designs 

New materials science has resulted in new electrode designs with improved properties in a wide 
range of applications. These include graphene-based electrodes with high conductivity and 
biocompatibility, carbon nanotube electrodes with high mechanical strength, textile-integrated 
electrodes for wearable technology, and biodegradable electrodes suitable for temporary 
implants. 

4. Signal Acquisition and Processing 

4.1 Amplification and Filtering 

EEG signals typically have a range of between 10 and 100 μV and thus necessitate a significant 
amplification, typically 1,000 to 10,000 times, to generate signals that can be analysed and 
interpreted [4]. This is how contemporary EEG systems handle the process, and how 
differential amplifiers and other filtering methods relate to it: 

a. Signal Amplification and Differential Amplifiers 

Purpose of Amplification: EEG signals are noisy and difficult to distinguish from ambient noise 
and background electrical activity due to their low amplitude. A high level of amplification is 
necessary for the digital hardware and subsequent processing algorithms to detect the signals. 
EEG signals are noisy and difficult to distinguish from ambient noise and background electrical 
activity due to their low amplitude. A high level of amplification is necessary for the digital 
hardware and subsequent processing algorithms to detect the signals. 

Differential Amplifiers: Differential amplifiers are used in modern EEG acquisition systems, 
and these amplify the voltage difference between two electrode inputs. This structure 
significantly increases the common-mode rejection capability of the system (i.e., electrical 
interference or noise that is the same on both electrodes), including electromagnetic power line 
or electronic device interference. 

Common-Mode Rejection Ratio (CMRR): The larger the CMRR of the differential amplifier, 
the more noise it rejects and isolates the true brain signals. 

b. Filtering Techniques in EEG Acquisition 

The EEG signals frequently have undesirable elements due to numerous sources. A variety of 
analog and digital filters are used to make sure that the documented signals display actual brain 
activity: 
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High-Pass Filters: These eliminate extremely low frequency components, e.g., DC drift, slow 
artifacts due to sweating, breathing, or baseline wandering. Typical cutoff frequencies range 
from 0.1–1 Hz. 

Low-Pass Filters: These filters remove high-frequency noise that is higher than the frequency 
of interest, such as electronic noise or muscle activity. Common cutoff frequencies are between 
70–120 Hz, depending on the application. 

Band-Pass Filters: Band-pass filters, which consist of high-pass and low-pass filters, are useful 
for separating particular EEG frequency ranges (such as delta, theta, alpha, beta, and gamma), 
which are essential for clinical diagnosis and neuroscience research. 

Notch Filters: These are specifically designed to eliminate narrow-band interference, most 
typically power line noise at 50Hz (in most countries) or 60Hz (in North America and parts of 
Asia). Notch filters are critical for preventing strong mains interference from distorting EEG 
recordings. 

4.2 Analog-to-Digital Conversion 

EEG sensors detect extremely small analog electrical signals from the scalp (typically 10–100 
μV). ADC converts these continuous signals into digital form so computers can process, store, 
and analyze them. High-quality conversion is vital: any information loss or distortion at this 
stage directly affects downstream EEG analysis and interpretation. The standard specification 
is: 

Resolution (16–24 bits): The number of bits determines how finely the analog voltage range is 
divided into digital levels. A higher resolution (e.g., 24 bits) allows for very subtle voltage 
differences to be detected—a necessity for accurate EEG signal capture. 

Sampling Rate (250–2,000 Hz): Indicates how many times per second the signal is sampled. 
High sampling rates (≥500 Hz) are needed to capture both slow rhythms (like delta waves) and 
fast transient brain events without aliasing. 

Input Range (±100 mV to ±10 V): It is the highest voltage difference that may be digitized by 
the ADC without distortion. This large dynamic range allows both the small EEG signals and 
the occasional large artifacts (e.g., muscle movement) to be represented without clipping. 

Common Mode Rejection Ratio (CMRR >100 dB): This is a ratio of the ADC system to reject 
noise or interference that appears on both input leads (e.g. power line hum). A large CMRR 
will imply that only genuine differential activity in the brain will be retained, enhancing the 
quality of the signal. 

4.3 Digital Signal Processing 
 
EEG analysis involves the use of digital processing methods that transform raw and complex 
brain signals into a form that can be interpreted. Each of the main strategies can be applied in 
this way to extract valuable information [1]: 
 
Independent Component Analysis (ICA): An EEG multichannel can be divided into 
independent statistical sources by the ICA method. This enables adequate identification and 
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removal of common gestures like eye blinking, muscular noise, and heartbeat signals, and 
enhanced clarity of neural data to be used in further analysis procedures. ICA is standard in 
high-quality EEG research pipelines, facilitating artifact correction with minimal loss of neural 
information. 
 
Frequency Domain Analysis (FFT): EEG time-domain signals are converted into their 
frequency components using the Fast Fourier Transform, which yields the power spectrum. 
The presence and strength of various brain rhythms, including delta, theta, alpha, beta, and 
gamma waves, are indicated by this spectrum. These rhythms are linked to various cognitive 
and physiological states of the brain. 
 
Time-Frequency Analysis (Wavelet Transform): Wavelet transforms provide a detailed, time-
resolved picture of how spectral power in different frequency bands evolves moment-to-
moment. This is critical for studying non-stationary or transient events (e.g., epileptic spikes, 
event-related potentials) and for tasks where brain activity shifts rapidly over time. 
 
Coherence and Phase Synchronization (Connectivity Analysis): These methods quantify the 
degree to which EEG signals from different brain regions are correlated in frequency or phase. 
Coherence assesses functional connectivity by measuring how well two signals are 
synchronized in their oscillatory patterns, shedding light on brain network interactions during 
rest or tasks. 
 
Pattern Recognition and Machine Learning: Machine learning strategies, such as Support 
Vector Machines, Convolutional Neural Networks, and other classifiers, are increasingly used 
to recognize complex patterns in EEG data. They are able to categorize brain states (e.g., sleep 
phase vs. wake phase, seizure vs. normal), identify cognitive or emotional reactions and read 
user intent in brain-computer interfaces, which makes EEG viable in any clinical and 
application-driven setting. 
 
These processes are frequently employed complementarily to allow researchers and clinicians 
to transform raw EEG data into clinically applicable, actionable data to aid diagnosis, cognitive 
testing, and higher-order brain-computer interfaces. 

5. Current Applications 

5.1 Clinical Diagnosis 

EEG technology plays a role in the diagnosis of [9] and in the monitoring of numerous 
neurological conditions:  

Epilepsy: Electroencephalography (EEG) is the gold standard test used to diagnose epilepsy or 
seizure focus, and to demonstrate that a treatment is effective. Long-term EEG monitoring can 
be used to characterize the patterns of the seizures and record occasional seizures. 

Sleep Disorders: Polysomnography with EEG is extremely useful in diagnosing sleep apnea, 
narcolepsy, and other sleep disorders. EEG can help determine sleep stages and identify 
abnormal sleep patterns. 
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Neurological Disorders: EEG can help diagnose and monitor conditions such as dementia, 
traumatic brain injury, and metabolic encephalopathies. The sensitivity of technology towards 
identifying the slightest variation in the activity of the brain will be useful in early diagnosis 
and assessment of progress. 

5.2 Brain-Computer Interfaces (BCIs) 

Brain-computer interfaces (BCIs) based on electroencephalography (EEG) allow direct 
communication between the brain and external devices without the need for physical contact. 
Recent years have witnessed notable progress in both active and passive EEG-based BCI 
applications. 
 
Major Applications: 
Robotic Prosthetics via Motor Imagery BCIs: 
Users can control robotic prosthetic devices by performing motor imagery—mentally 
rehearsing movements without actual muscle activity. These BCIs decode specific EEG 
patterns corresponding to the imagined motion, enabling real-time control of robotic limbs for 
individuals with motor impairments. Although such systems have demonstrated promising 
results, their accuracy often varies due to individual physiological differences [20]. 
 
P300-Based Communication Systems: 
P300 BCIs leverage the brain’s P300 event-related potential, detected approximately 300ms 
after a relevant stimulus. This paradigm enables "spellers," where users can select characters 
or words on a computer interface for communication. P300 speller systems have proven 
invaluable for users with severe motor disabilities, allowing reliable non-verbal 
communication and benefiting from ongoing improvements in speed and usability [10, 20]. 
 
Steady-State Visual Evoked Potential (SSVEP) Systems: 
SSVEP BCIs are based on the rhythmic brain activity that is excited by flickering visual stimuli. 
Such systems are useful in controlling devices (e.g., wheelchair or smart home technology) and 
cognitive neurofeedback in rehabilitation and training since they have a fast response time and 
do not require much training of the user. 
 
Advances in Passive BCIs: Passive BCIs analyze the affective, cognitive, or attentional states 
of a user involuntarily expressed in brain activity, allowing the use of such applications as 
adaptive workload and emotion recognition. As an example, passive BCIs can track attention 
or fatigue and initiate context-specific changes in human-machine systems. Although the 
potential of passive BCIs is huge, their popularization is still constrained by: 
Generalizability: There is a tendency for poor performance when the systems are implemented 
on various users, physiological conditions, and environmental contexts. 
Dependability: EEG signals are sensitive to noise and artifacts, reducing reliability outside 
laboratory settings. 
Ease of Use: Current passive BCI systems frequently require complex electrode setups or time-
consuming calibration, hindering practical everyday use. 
5.3 Cognitive Research  
EEG offers useful insights into cognitive processes [6]: 
 
Event-related potentials (ERPs): ERPs are voltage fluctuations in the EEG that are time-
locked to specific sensory, motor, or cognitive events. By examining the latency and amplitude 
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of different ERP components, researchers can investigate processes such as attention, memory, 
and language processing. 
Oscillatory Activity and Neural Networks: Analysis of the oscillatory nature of EEG—
characterized by brainwaves in distinct frequency bands (delta, theta, alpha, beta, gamma)—
helps elucidate the dynamics of neural networks. The interaction and synchronization of these 
oscillations across networks underpin core cognitive functions, linking oscillatory activity to 
awareness, memory, behavior, and even network resonance properties. 
Emotion Recognition and Affective Computing: EEG is increasingly used in affective 
computing to recognize and categorize emotional states [12]. Unlike other modalities (such as 
facial expression or voice), EEG provides an objective measure by reflecting neural activity 
associated with emotional processing. By analyzing multi-region EEG patterns, often 
combined with machine learning, systems can distinguish emotional categories and track 
affective responses in real time. These approaches enhance human–machine interactions, 
adaptive system design, and mental health monitoring applications [7]. 
 

5.4 Consumer Applications 
The development of portable, easy-to-use electroencephalography (EEG) technology has led 
to an explosion of consumer products, creating a healthy market in what has been called mind-
tech. These devices include sleek wearable headsets, to more advanced brain-computer 
interfaces (BCIs). 
Major Consumer Applications:  
Meditation and Mindfulness Training: Meditation EEG-based applications provide feedback 
in real-time about the state of the mind based on brainwave activity. They include guided 
programs, monitor the stress and concentration levels, offer neurofeedback to improve 
mindfulness, and assist users in changing their mental approach to achieve a more relaxed state. 
 
Gaming and Entertainment Interfaces: The arrival of so-called neurogaming enables players to 
manipulate aspects of games by mental concentration, relaxation, or other states of mind using 
consumer EEG devices such as NeuroSky and Emotiv. The interfaces interpret real-time 
brainwave patterns as in-game commands or adaptive gameplay, generating immersive 
experiences that have not been achievable with a conventional controller [3, 13]. 
 
Cognitive Evaluation and Brain Training: Brain training programs and cognitive evaluation 
tools use EEG to provide neurofeedback and measure cognitive functions such as memory, 
attention, and executive control. Such platforms are designed for elderly populations to 
counteract cognitive decline or for general users seeking mental performance enhancement 
[14]. 
 
Wellness and Stress Monitoring: Portable EEG and hybrid devices (often integrating additional 
sensors like ECG) track physiological and neural indicators of stress and general wellness in 
real life [15]. These wearables can alert users to excessive cognitive load, enable self-regulation 
in high-pressure environments, and support ongoing mental health monitoring and 
intervention. 

6. Technological Innovations and Emerging Trends 

6.1 Wireless EEG Systems 

Wireless EEG technology has advanced rapidly, offering: 
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Ambulatory monitoring in natural environments: Wireless EEG sensor networks (WESN) 
enable discreet, flexible, and scalable placement of miniaturized sensors on the scalp, 
drastically improving data capture in real-world settings. 

Real-time data transmission: Modern systems support synchronous multi-channel recording 
and seamless transmission to remote centers, reducing electromagnetic interference and 
providing robust signal integrity. 

Integration with smartphones and cloud computing: Systems utilize Bluetooth and edge/cloud-
based analytics for mobile, continuous monitoring, and population-level studies. 

Improved patient comfort: Eliminating cumbersome wires and employing novel miniaturized 
designs increases wearer compliance in everyday or long-term testing [16]. 

6.2 High-Density EEG Arrays 

High-density EEG systems with 128, 256, or even 512 channels provide the latest high-density 
dry electrode arrays that deliver superior spatial resolution and comfort compared to traditional 
gel-based systems. Innovations in flexible substrates and advanced material compositions 
allow for longer, more comfortable recordings while reducing setup time [16] 

6.3 Flexible and Wearable Sensors 

Novel fabrication techniques (e.g., electrospinning, filamentary flexible substrates) enable 
robust, scalable, and highly sensitive wearable EEG devices that are mechanically flexible and 
easy to integrate into daily apparel, supporting both health and performance monitoring [17]. 

6.4 Ear-EEG Technology 

In-ear EEG provides signal quality comparable to traditional scalp EEG while greatly 
enhancing wearer comfort and feasibility for continuous, everyday life monitoring. Advances 
in electrode materials and form factors (e.g., self-hydrating hydrogels, textile electrodes) 
further reduce impedance and improve signal robustness [18]. 
 

6.5 Multi-Modal Integration 
Multimodal approaches increase accuracy in mental state decoding, cognitive assessment, and 
clinical diagnostics. Machine learning-powered fusion models are central to handling the 
complexity of such data integration [19]. 

6.6 Artificial Intelligence and Machine Learning  

AI and multimodal frameworks (e.g., combining EEG with audio/video) have set new 
benchmarks for complex tasks such as emotion and mental fatigue recognition. Through the 
automation of data interpretation and the creation of more reliable, user-adaptive systems, this 
has greatly improved clinical and consumer applications [19]. 

7. Challenges and Limitations 

7.1 Technical Challenges 

One of the most basic neuroscience, cognitive research, and clinical diagnostics technologies 
is electroencephalography (EEG) since it is non-invasive and has a high temporal resolution. 
However, despite all the advances, there are still several obstacles to the technology that limit 
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its wider use and effectiveness. These constraints include technical constraints, practical 
usability issues, and data analysis constraints: 

Signal Quality: EEG signals are very low amplitude and highly prone to physiological artifact 
contamination (muscle activity, eye blinks and movements, cardiac signals, and environmental 
electrical interference). How to reliably remove or minimize these artifacts remains a problem. 

Spatial Resolution: Spatial resolution is limited by the smoothing effect of the skull and by 
sensor and neural source separations in EEG. Deep brain structures are very hard to monitor. 

Individual Variability: The thickness of the skull, the structure of the brain, and its physiology 
vary significantly, depending on the individual's peculiarities, which influence the quality and 
interpretation of the signals. 

7.2 Practical Limitations 

Setup Time: The conventional wet EEG systems are time-consuming to set up, with electrode 
gel and impedance optimization, and cannot be used in a quick deployment or emergency 
scenario. Although dry and semi-dry electrodes have been developed, they usually require 
trade-offs between signal quality and user comfort. In addition, regular skin-electrode contact 
is difficult to obtain. 

User Comfort: Long recording sessions on EEG may lead to skin irritation, pressure sores, or 
discomfort, especially when using rigid caps and wet electrodes. Data quality is further 
compromised by the displacement of the electrodes or drying of the conductive gel with time. 

Environmental Sensitivity: EEG systems are particularly susceptible to the electromagnetic 
environment due to the presence of other electronic equipment or a power line. Shielding, 
proper grounding, and sophisticated filtering are required, but they introduce complications for 
use in uncontrolled environments. 

7.3 Data Analysis Challenges 

Complexity: EEG data are high-dimensional, highly variable over time and often non-
stationary. The extraction of meaningful features needs sophisticated knowledge of signal 
processing, such as time-frequency analysis, connectivity measures, and machine learning. 
Such complexity presents a challenge to non-specialized researchers and clinicians. 

Standardization: No standard protocol exists regarding how to acquire EEG data, how to 
preprocess data, or how to interpret data. This restricts the reproducibility and cross-study 
comparisons, interrupting clinical translation and broad meta-analysis. Initiatives such as the 
EEG-BIDS (Brain Imaging Data Structure) standard and open datasets attempt to do so, but 
there is no consistency in uptake. 

Real-Time Processing Limitations: Creating algorithms that can perform fast and accurate 
real-time EEG analysis is especially difficult, particularly in complex BCI applications. 
Problems such as computational burden, artifact contamination, and inter-session variability 
are involved. Although deep learning and transfer learning methods have the potential to 
increase speed and accuracy, real-time EEG solutions are a current research topic that is not 
yet fully reliable. 
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8. Future Directions and Opportunities 

8.1 Technological Developments 

Recent developments in materials science and electronics have triggered a major breakthrough 
in EEG technology: 

Advanced Materials: New materials such as graphene, carbon nanotubes, and conductive 
polymers have better electrical conductivity, biocompatibility, and mechanical flexibility. 
These materials facilitate electrodes that have high signal quality and increase the comfort of 
wearers and minimize skin irritation. 

Miniaturization: The ongoing miniaturization of the hardware used to acquire EEG facilitates 
the creation of ultra-portable, low-power devices that can be used in long-term monitoring with 
increased channel density. These allow mobile brain monitoring in real-time and compatibility 
with smartphones and edge computing systems. 

AI (Artificial Intelligence): Artificial intelligence, particularly deep learning, is 
revolutionizing EEG signal processing by improving artifact detection, signal enhancement, 
and pattern recognition. These advances facilitate more accurate diagnosis, brain–computer 
interface (BCI) control, and cognitive state monitoring. 

8.2 Clinical Applications 

Personalized Medicine: EEG is increasingly leveraged to tailor neurological and psychiatric 
treatments by monitoring individual brain responses and adapting interventions accordingly. 
Neural biomarkers derived from EEG can guide personalized therapies for epilepsy, 
depression, and neurodegenerative diseases. 

Telemedicine: Wireless and wearable EEG devices support remote and continuous patient 
monitoring, enabling early detection of neurological changes and real-time clinician 
intervention. Cloud-based analytics platforms facilitate scalable tele-neurology services, 
critical during healthcare access constraints. 

Preventive Healthcare: Portable EEG systems offer potential for early identification of 
cognitive decline and neurodegenerative disorder risk, through regular brain activity 
assessments in at-risk populations. Neurofeedback and cognitive training protocols may 
support proactive brain health maintenance. 

8.3 Consumer and Industrial Applications 

Human-Computer Interaction: Future EEG-based interfaces will become more intuitive and 
seamless, decoding user intent with higher precision for applications including virtual reality, 
augmented reality, and assistive communication devices. 

Cognitive Enhancement: The goal of neurofeedback and applications to brain training is to 
enhance mental functioning and emotional control. These consumer neurotechnologies also 
use real-time EEG analytics to offer cognitive enhancement programs on a personalized basis. 

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 9, 2025 PAGE NO: 111



Workplace Monitoring: In industries where safety is a top priority, EEG monitoring may play 
a crucial role in the real-time evaluation of cognitive load, fatigue, and attention states. This 
will help to enhance worker wellbeing and prevent accidents. 

8.4 Research Frontiers 

Brain Networks: Major advances in EEG signal processing and source localization permit a 
detailed examination of large-scale brain network connectivity that can explain neural 
mechanisms underlying cognition and pathology. 

Developmental Studies: Research on neurodevelopmental trajectories and aging-related brain 
changes is supported by ongoing EEG monitoring throughout the lifespan, which helps guide 
early interventions and healthy aging practices. 

Computational Neuroscience: Computational brain models are currently being integrated 
with high-resolution EEG data, which allows the theoretical framework to be verified and the 
brain behavior to be simulated under both health and disease conditions. 

9. Artificial Intelligence and Machine Learning in EEG 

9.1 Deep Learning Approaches 

Deep learning has introduced revolutionary features to EEG analysis: 

Convolutional Neural Networks (CNNs): CNNs are effective at extracting spatial patterns in 
multi-channel EEG data, which can be used to determine seizure occurrence or to classify 
motor imagery. 

Recurrent Neural Networks (RNNs): Capture temporal dependencies in EEG time series, 
supporting continuous monitoring applications such as sleep staging and workload assessment. 

Transformer Networks: Emerging transformer architectures are applied to EEG for modeling 
long-range dependencies, improving classification accuracy on complex datasets. 

Generative Adversarial Networks (GANs): Utilized for data augmentation and artifact 
removal, enhancing the robustness of machine learning models trained on limited EEG datasets  

9.2 Clinical Applications of AI-EEG 

The use of machine learning [2] and deep learning to automate schizophrenia classification 
based on EEG has been the topic of systematic reviews, which indicate the possibility of AI in 
psychiatric diagnosis. BCI emotion recognition systems based on EEG, which can be used in 
a wide variety of areas, are currently strongly dependent on machine learning and deep learning 
methods. 
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9.3 Traditional Machine Learning Methods 

Classical machine learning techniques like Support Vector Machines, Random Forests, Naive 
Bayes, and K-Nearest Neighbours remain vital, especially for smaller datasets and interpretable 
model deployment. 

9.4 Feature Engineering and Selection 

EEG analysis requires effective feature engineering to derive meaningful and discriminative 
information on complex neural signals to be used in machine learning models. The latest 
techniques are: 

Time-Frequency Features using Wavelet Transforms: EEG signals can be decomposed on 
multiple scales using wavelet-based methods like the Continuous Wavelet Transform (CWT) 
and Discrete Wavelet Transform (DWT). This enables the recording of transient and oscillatory 
activity at conventional frequency bands (delta, theta, alpha, beta, gamma), with an emphasis 
on temporal dynamics that are important in categorizing cognitive states, motor imagery, and 
epileptic events. The wavelet energy, entropy, and coefficients have been discovered to be quite 
helpful in increasing the accuracy of classification. 

Coherence and Phase Synchronization Connectivity Features: Functional connectivity 
measures of neural synchrony and interaction between brain regions include coherence, phase-
locking value (PLV), and phase lag index (PLI). These features extract network-level dynamics 
that can be used to control BCIs, detect neurological disorders, and estimate mental states. 

Nonlinear Characteristics - Complexity and Entropy Measures: Approximate Entropy, 
Sample Entropy, and Fractal Dimension are some of the entropy and complexity metrics used 
to quantify the nonlinear, chaotic characteristics of EEG. These measurements are sensitive to 
subtle changes in the brain brought on by pathology, cognitive load, and exhaustion. They are 
added to feature sets to enhance the identification of seizure activity and mental exhaustion. 

9.5 Challenges in ML-EEG Integration 

Machine learning (ML)with EEG analysis continues to encounter several challenges: 

Data Quality: To train machine learning models, high-quality, artifact-free EEG recordings 
are essential. If not properly addressed, noise and physiological artifacts reduce model 
accuracy. 

Interpretability: The ML models, especially deep learning, are often black-boxes.  The ability 
to develop interpretable models that describe neurophysiological relationships is a key to 
clinical acceptance and trust. 

Generalization: EEG variability across individuals, sessions, and devices hampers model 
robustness. Transfer learning and domain adaptation techniques are being explored, but remain 
a challenge  

Real-time Implementation: Achieving low-latency, efficient ML algorithms suitable for real-
time EEG applications (e.g., BCIs, clinical monitoring) requires optimization, balancing 
computational cost and accuracy. 
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10. Regulatory and Ethical Considerations 

10.1 Regulatory Framework 

Clinical EEG devices must comply with stringent regulatory standards to ensure safety and 
efficacy. Medical EEG devices require clearance via FDA pathways, validating performance 
and safety. EU medical device directives and regulations must be observed to have access to 
the market. Quality management certification guarantees consistency and control of 
manufacturing. Medical electrical equipment, electrical safety, and performance standards. 

10.2 Data Privacy and Security 

As the use of EEG is extended to the consumer market, it is essential to secure sensitive neural 
data: 

Data Protection:  Brain data should be encrypted and stored in a secure way to avoid unwanted 
access and leakage. 

User Consent and Data Ownership: It is critical to have transparent policies for data 
collection, use, and ownership. 

Risk of Neural Data Discrimination: It is important to take precautions against potential 
discrimination, including discrimination based on neural markers. 

10.3 Ethical Implications 

Cognitive Enhancement Equity: The provision of brain enhancement technology is an issue 
of fairness. 

Mental Privacy: Unauthorized access to mental states may be a violation of fundamental 
privacy rights. 

Informed Consent: Users should understand how neural monitoring may affect their 
cognitive, social, and legal well-being. 

Dual-Use Concerns: EEG technologies need ethical regulation because they can be repurposed 
for military or surveillance purposes. 

11. Economic Impact and Market Trends 

11.1 Market Growth  
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The global market of electroencephalography (EEG) devices has been expanding at a high rate, 
and its value is estimated at USD 1.82 billion in 2024. It is estimated that the market will grow 
to approximately USD 5.12 billion by 2035, which is a compound annual growth rate (CAGR) 
of almost 9.85%. This development is mostly fuelled by a number of converging factors: 

Rising incidences of neurological disorders: Epilepsy, Alzheimer's, Parkinson's, and other 
neurodegenerative diseases are on the rise worldwide, which increases the need to use high-
tech diagnostic and monitoring devices. 

Growing demand for brain–computer interfaces (BCIs): BCIs are gaining popularity in 
medical rehabilitation, assistive technologies, and consumer applications, driving innovation 
and market growth [11]. 

Consumer demand in neurofeedback and cognitive training: The neurofeedback and 
cognitive training market is finding its way into wellness, stress management, and cognitive 
enhancement markets. 

Technological developments: The development of portable, wireless, and user-friendly EEG 
systems allows wider use in the clinical and consumer markets, encouraging real-time 
monitoring and real-world application. 

11.2 Key Market Segments 

The EEG market has different segments with different characteristics and growth trends: 

Clinical EEG: The most extensive market, consisting mostly of established medical device 
companies, is concerned with the diagnosis and monitoring of neurological disorders in 
hospitals and clinics. This segment is becoming more high-density systems and sophisticated 
analytic tools. 

Research EEG: Specialized EEG systems with high channel counts and sophisticated signal 
processing capabilities serve neuroscience research institutes and academic laboratories, 
enabling detailed brain function exploration. 

Consumer EEG: A fast-growing industry based on wearable EEG headsets and brain-
computer interface-enabled wellness, gaming, and mental performance apps. This segment has 
the advantage of simplified and low-cost devices and integration with mobile platforms. 

BCI Applications: This segment covers assistive motor disability technologies, 
communication aids, and human augmentation technologies, which are highly innovative and 
experiencing increased market demand. 

11.3 Investment and Funding 

The EEG technology development has a strong financial momentum: 

Venture capital funding: Startups building wearable EEG sensors, AI-based analytics, and 
new BCI interfaces receive significant venture funding with the goal of commercializing 
transformative neurotechnology solutions. 
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Government research grants: Public funding organizations all over the world fund 
foundational and translational neurotechnology projects, which promote innovation and 
respond to the needs of the general population. 

Corporate R&D investments:  Well-established healthcare and technology firms invest 
heavily in next-generation EEG hardware, software, and integrated AI systems to diversify 
their product lines. 

Public-private partnerships: To expedite regulatory approvals, standardization, and 
commercialization pathways for EEG devices, collaborative initiatives bring together the 
strengths of the government, industry, and academic institutions. 

12. Conclusion 

The technology of EEG sensors has come a long way since its early days and has been 
developed to be a complex clinical instrument, as well as a multifaceted neuroscience research, 
medical diagnosis, and human-computer interaction platform. The development of wireless, 
wearable, and high-density EEG systems has increased the technology's applications while 
improving user experience and data accuracy. 

Even though some limitations concerning signal quality, spatial resolution, and data processing 
complexity persist, mitigation is achieved continuously through innovations in the fields of 
materials science, electronics, and signal processing. The integration of machine learning and 
artificial intelligence approaches has the potential to improve EEG technology's capabilities 
and accessibility. 

In the future, EEG sensor technology is expected to play an increasingly important role in 
personalized medicine, cognitive enhancement, and our understanding of brain function. As 
technology becomes more portable, affordable, and user-friendly, it will almost certainly find 
new applications in healthcare, research, and consumer markets. 

The future of EEG sensor technology looks bright, with ongoing research and development 
efforts aimed at improving signal quality, expanding applications, and making the technology 
more accessible to researchers, clinicians, and consumers alike. As we continue to uncover the 
mysteries of the human brain, EEG technology will be critical in advancing our understanding 
of neural function and developing novel treatments for neurological disorders and cognitive 
enhancement. 
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