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Abstract: Hybrid solar–wind renewable energy systems (HSW-RES) offer a reliable alternative to standalone 
renewable technologies by mitigating intermittency and improving overall system stability. This study presents a 
comprehensive framework for evaluating and optimizing HSW-RES performance, with particular emphasis on 
wind speed variability and inverter power quality. The methodology integrates aerodynamic modeling, power 
quality assessment, and advanced optimization techniques to provide a rigorous analysis of system behavior. 
The wind turbine power curve is derived using aerodynamic equations, accounting for critical parameters such 
as cut-in, rated, and cut-out wind speeds. Inverter performance is evaluated through Fast Fourier Transform 
(FFT) and Total Harmonic Distortion (THD) analysis, ensuring compliance with grid standards and minimizing 
harmonic distortion. System sizing is addressed using multiple optimization methods, including Grid Search, 
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), within a flexible optimization framework. 
The optimization is conducted over a 24-hour simulation period, ensuring that the dynamic variations in 
renewable energy generation are accurately captured. three wind regions are considered based on rated power 
threshold. Comparative visualizations of optimization outcomes further enhance the interpretability of results. it 
is concluded that Grid search with 10 panels offers the optimal  sizing.  

 
Key Words: Hybrid Solar-Wind system, Renewable Energy System, Machine Learning, Solar Inniradance, 
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1. Introduction     
The design of hybrid renewable energy system by integrating solar and wind system is widely studied in 
recent times. these hybrid solar-wind renewable energy systems (HSW-RES)are required to be investigated 
under the varying conditions of various design parameters. TheHSW-RES have emerged as a promising 
solution to address the intermittency and reliability challenges of standalone renewable sources. Recent 
studies emphasize the importance of optimizing these systems across multiple time scales and under 
resource uncertainty to ensure energy stability and cost-effectiveness Mingqi et al [1]. The integration of 
solar and wind technologies, supported by advanced battery configurations K. Narwat et al [5], enables 
continuous power delivery and enhances system resilience. Furthermore, optimization techniques such as 
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) have shown significant potential in 
improving power flow and operational efficiency M. Thirunavukkarasu et al [3], and Papazoglou et al. [4]. 
As highlighted by Alam et al. [2], a well-designed hybrid system not only improves energy availability but 
also supports sustainable development goals through cleaner energy generation.The performance and 
reliability of HSW-RESsystems are highly sensitive to variations in wind speed, making its impact a 
critical factor in system design and optimization. Despite the growing adoption of HSW-RES, there 
remains a need for comprehensive investigation into how fluctuating wind conditions and 
aerodynamicinfluence both energy output and power quality. In particular, understanding the aerodynamic 
behavior of wind turbines across varying wind speeds, alongside the inverter’s harmonic response, is 
essential for ensuring grid compliance and maximizing system efficiency. This study addresses the gap by 
integrating wind speed analysis into a unified framework for evaluating hybrid system performance. 

 
Figure 1 basic Simulation andHSW-RES System architecture 

Therefore, in this research work proposed basic architecture as is illustrated in the Figure 1. The proposed 
methodology integrates both aerodynamic and power quality analyses to provide a comprehensive. Table 1 
below presented the abbreviations used in the study. 
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Table 1 Abbreviation and Nomenclature of design parameters 
Abbreviations Abbreviations 

PV Photovoltaic SVR Support Vector Regression 
GA Genetic Algorithms PSO Particle Swarm Optimization 

HSW Hybrid Solar-Wind HWSES Hybrid Solar–Wind Energy System  

RES Renewable Energy generation System RMSE Root Mean Square Error 
NN  Neural network LR Linear Regression 

ML Machine Learning MPPT Maximum Power Point Tracking 
HRES Hybrid renewable energy systems DC Direct Current 
RBF Radial Basis Function AC Analog Current  
LR Linear Regression HOMER Hybrid Optimization Model for Electrical Renewable energy 

THD Total Harmonic Distortion  NaN’s Not a Number 

 
The context for this study involves performing two distinct analyses related to a hybrid energy system: one 
focusing on a wind turbine's power generation and the other on the performance of a power electronics 
inverter.Additionally, research is aimed to investigate various optimization techniques for optimal sizing of 
HSW-RES systems. the impact of wind speed variation is primarily considered as context of the design and 
investigation.  
For evaluation of renewable energy system performance this research firstcalculates and plots the wind 
turbine’s ideal power curve using aerodynamic equations, which allows for an accurate representation of 
the turbine’s output across varying wind speeds. This step is essential for understanding the operational 
characteristics and efficiency of the turbine under realistic conditions. In addition, the methodology 
demonstrates the application of Fast Fourier Transform (FFT) and Total Harmonic Distortion (THD) 
analysis to assess inverter performance. These techniques are critical for evaluating the frequency spectrum 
and quantifying harmonic distortions in the inverter’s output, ensuring compliance with grid standards and 
improving overall power quality. By combining aerodynamic modeling with power quality assessment, the 
methodology offers a robust framework for analyzing and optimizing renewable energy systems.  
 
1.1 Wind Turbine Power Curve Analysis: This section is significant for predicting and understanding the 
performance of a wind turbine under varying wind conditions.By defining key parameters like cut-in, rated, 
and cut-out speeds, the script calculates an ideal power curve. The implication is the ability to estimate 
energy yield, assess turbine suitability for a specific location, and provide a foundational model for wind 
farm power generation studies. Research uses a well-defined, physics-based formula for calculating the 
aerodynamic power of a wind turbine. This makes the calculation transparent and easy to understand.The 
power calculation is based on the aerodynamic equation 

����� ����
= 0.5 ⋅ ���� ⋅ � ⋅ �� ⋅ ����

�                                                 (1) 

Where;  ����� ����
 is representing aerodynamic power 

����is the air density, specified as 1.225 kg/m³ for this simulation case. 
            A is the swept area of the windturbine rotor, calculated as  

�. ������
� in ��.                                                                  (2) 

            The �� is a 0.4 and is a power coefficient. 

            The ���� is defined as the Wind speed in above eq.   
 
1.2 Inverter FFT and THD Methodology:The inverter FFT and THD methodology presented in this 
script provides a systematic approach for assessing the quality of power generated by inverters, which are 
essential for converting DC power from renewable sources such as solar and wind into grid-compatible AC 
power. By employing a Fast Fourier Transform (FFT), the script analyzes the frequency spectrum of the 
inverter’s output current, enabling precise calculation of Total Harmonic Distortion (THD). This approach 
allows engineers to quantify and identify unwanted harmonics that can lead to equipment malfunctions, 
excessive heating, and reduced efficiency.Ensuring low THD is critical, as it serves as a key indicator of a 
high-quality, reliable, and grid-compliant inverter, thereby supporting stable and efficient power delivery.as 
an limitation the inverter analysis section is a conceptual demonstration using a synthetic signal. In this 
study, the performance of a grid-connected hybrid solar–wind (HSW) system is analysed under normal 
operating conditions using simulation-based evaluation. The schematic of the proposed HSW system is 
illustrated in Figure 1, where the outputs of the individual solar and wind units are combined, processed 
through an inverter, and subsequently integrated into the grid via a transformer. 
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1.3Contribution of Work  
This work makes several key contributions to the optimization of hybrid renewable energy systems. Paper 
initially contributed validated the renewable energy system analysis: wind turbine power assessment and 
power electronics performance evaluation. The power curve evaluation covers all four operational regions 
of an ideal wind turbine: below cut-in, the aerodynamic power region, the constant rated power region, and 
above cut-out. This provides a nearly idealized model of turbine behavior. 
Paper also contributed to present a comparative analysis of techniqueslike Grid Search, PSO, and GA based 
optimization for predicting the effective system sizing. The study incorporates detailed system simulation 
and modeling that includes solar PV, wind turbines, battery storage, and load demand, ensuring realistic 
performance evaluation. A flexible optimization framework is developed that considers multiple variables, 
such as the number of PV panels and wind speed scaling factor, providing a more comprehensive design 
approach. A custom scoring function is introduced to balance battery state of charge, energy deficit, and 
excess energy production, enabling more practical system performance assessment. The methodology also 
generates clear visualizations to compare optimization results and adapts to different optimization 
toolboxes. Furthermore, physics-based modeling of wind turbine output and an hourly energy balance 
simulation are used to capture accurate system dynamics. Together, these elements establish a robust and 
detailed framework for optimizing hybrid renewable energy systems. 
As another contribution work demonstrating the methodology for evaluating inverter performance using 
FFT based THD analysis over the synthetically generated distortion in inverted output current. It provides a 
practical, step-by-step guide on how to analyze a signal for harmonic content. Research provided realistic 
simulation of non-ideality by synthetically adding common low-order harmonics (3rd, 5th, and 7th) to an 
ideal sine wave, the script effectively simulates the non-ideal behavior of a real-world inverter. This is a 
crucial advantage for educational purposes, as it shows what kind of distortions to look for. 
The remaining paper is organized to present systematic investigation for the hybrid solar -wind system 
design using machine learning training modes. In rest of paper first reviewed the related works of HSW 
systems as given in section 2, followed by the summary and problem statements in Section 3. The section 4 
has presented the proposed HSW-RES simulation methodology and mathematical modeling. The simulated 
outcomes are presented as results of the work in the Section 5. and finally, the section 6 has concluded the 
work and also presented the discussion on the scopes for future.  
 
2.0 Related Works and Litterateur 
Figure 2 presents a structured classification of hybrid solar–wind systems, dividing them into optimization-
based methods and simulation-based approaches. It highlights key techniques such as Genetic Algorithms, 
Particle Swarm Optimization, and MATLAB/Simulink modeling, along with their associated challenges 
and problems identifications. 

 
Figure 2 Classifications and challenges ofHWS-RES systems modeling  

Hybrid renewable energy systems (HRES), particularly solar–wind configurations, have received 
significant attention for their ability to improve reliability and mitigate the intermittency inherent in 
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standalone renewable sources. Bai et al. [1] (2024) developed an optimization framework that accounts for 
multi-time scale energy stability and resource uncertainties, emphasizing the importance of stochastic 
modeling for maintaining system stability, though they acknowledge the associated computational 
challenges. Alam et al. [2] (2025) investigated the design and simulation of a solar–wind hybrid system, 
focusing on generation feasibility and load matching; however, their study does not incorporate a formal 
optimization methodology to enhance system performance. Thirunavukkarasu et al. [3] (2023) reviewed 
various optimization strategies, including Particle Swarm Optimization (PSO) and Genetic Algorithms 
(GA), highlighting their effectiveness for HRES sizing while noting the necessity for experimental 
validation. Papazoglou and Biskas [4] (2023) conducted a comparative analysis of GA and PSO within 
optimal power flow applications, illustrating the trade-offs between convergence speed and solution 
quality, although their study is restricted to power flow optimization rather than integrated hybrid system 
design. 
The role of energy storage in improving hybrid system reliability has also been studied extensively. Narwat 
and Gupta [5] (2022) analyzed combined battery systems with solar–wind HRES, showing improvements 
in reliability but raising concerns regarding scalability. Similarly, Ammari et al. [6] (2022) reviewed 
control, energy management, and optimization approaches for hybrid systems, emphasizing multi-objective 
trade-offs between cost, efficiency, and reliability. Peng et al. [7] (2025) investigated the performance 
interaction between PV arrays and wind turbines, highlighting the importance of considering aerodynamic 
effects in co-located systems. Sabri et al. [8] (2024) introduced a nonlinear back-stepping control approach, 
demonstrating improved efficiency and stability, though the complexity of implementation remains a 
barrier. Ahmed et al. [9] (2024) advanced the field by applying hybrid machine learning regression models 
for solar PV power prediction, reporting high accuracy, but their focus remained limited to solar rather than 
integrated HRES. 
Measurement accuracy and system stability are also central themes in recent works. Monika et al. [10] 
(2024) studied measurement accuracy for hybrid systems, linking errors to system stability, but their work 
was restricted to small-scale systems. Earlier contributions, such as Ben Jemaa et al. [11] (2014), utilized 
fuzzy PSO for optimal sizing, offering early insight into intelligent optimization but lacking modern 
scalability. Shah et al. [12] (2021) addressed hybrid system design for Arctic regions using multi-objective 
optimization, balancing reliability and cost, though their methodology was geographically constrained. 
Staden et al. [13] (2022) analyzed off-grid PV–wind–battery hybrids, underlining the importance of system 
reliability but restricting their findings to off-grid applications. Chauhan and Dwivedi [14] (2017) 
employed PSO for sizing PV–wind–biomass hybrids, demonstrating cost-performance trade-offs while 
facing computational challenges. 
Recent studies have emphasized hybrid microgrid reliability and integration with emerging technologies. 
Eniola et al. [15] (2025) explored wind-hydrogen microgrids, demonstrating how wind variability affects 
sizing, although hydrogen integration raised economic concerns. George et al. [16] (2023) introduced a 
modified dragonfly algorithm for optimal sizing, proving efficient results in institutional applications, 
though lacking real-world validation. Earlier, Tiwari and Dubey [17] (2015) proposed a methodology for 
hybrid sizing but relied on simplified assumptions without advanced optimization. More recently, Güven et 
al. [18] (2023) combined hybrid metaheuristic algorithms for multi-objective optimization, showing strong 
potential in cost-emission-reliability trade-offs but at the expense of high computational demands. Vafaeva 
et al. [19] (2024) applied PSO for solar–wind microgrid sizing, producing effective results, though omitting 
storage integration.Emerging artificial intelligence methods have also influenced HRES research. Abid et 
al. [20] (2022) proposed the artificial hummingbird algorithm for renewable planning, addressing 
uncertainty but showing limited focus on hybrid system integration. Finally, Lodin et al. [21] presented a 
MATLAB/Simulink-based modeling framework for solar–wind hybrid systems, demonstrating practical 
feasibility but without optimization or control mechanisms. Collectively, these studies indicate significant 
progress in HRES optimization, modeling, and control, but persistent challenges remain in scalability, real-
time applicability, computational complexity, and integration with advanced energy storage and grid-
interfacing technologies. 
      The studies in hybrid renewable energy system design emphasize metaheuristic optimization, modeling, 
and multi-criteria decision-making to improve system performance and reliability. Kouihi et al. [22] 
demonstrate a GA-driven framework for PV/wind hybrid systems, balancing energy reliability, cost, and 
sizing constraints while noting GA’s sensitivity to parameters. Paliwal [23] applies a Butterfly-PSO 
approach for reliability-focused wind–battery sizing, highlighting robust global search but increased 
computational demand. Lodin et al. [24] provide MATLAB/Simulink simulations that clarify component 
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interactions, though their deterministic approach limits engagement with stochastic variability. Minakshi 
and Kumar [25] integrate optimal sizing with geographic placement to enhance economic and operational 
efficiency, albeit with higher computational complexity. Lazaar et al. [26] extend GA optimization to PV–
battery–hydrogen systems, addressing storage trade-offs and techno-economic uncertainties. Finally, Alavi 
et al. [27] combine MCDM with heuristics for site selection and sizing of off-grid wind–hydrogen systems, 
demonstrating improved decision support while highlighting sensitivity to stakeholder weighting and input 
data quality. Collectively, these works illustrate the evolving strategies for optimizing hybrid renewable 
systems under multi-dimensional technical, economic, and reliability considerations.Summary of hybrid 
solar wind energy systems modeling and optimal sizingis presented in the Table 2 along with limitations.  

Table 2 Summary of hybrid solar wind energy systems modeling and optimalsizing 

Authors & Year Methodology Performance Metrics Limitations 
Bai et al. [1] (2024) Multi-time scale optimization 

under renewable resource 
uncertainty 

Energy stability, 
uncertainty modelling 

High computational 
complexity; lacks real-
time validation 

Alam et al. [2] 
(2025) 

Design and simulation of 
solar–wind hybrid system 

Power generation 
analysis, load matching 

Simplified 
assumptions; lacks 
optimization 
framework 

Thirunavukkarasu 
et al. [3] (2023) 

Review of optimization 
techniques (PSO, GA, etc.) 

Survey-based 
comparison 

No experimental 
validation; general 
findings only 

Papazoglou 
&Biskas [4] (2023) 

Comparison of GA vs PSO for 
optimal power flow 

Convergence rate, 
solution quality 

Focus only on OPF, 
not hybrid RES 

Narwat& Gupta [5] 
(2022) 

Hybrid system with combined 
batteries 

Reliability, energy 
storage efficiency 

Limited scalability; 
case-specific 

Ammari et al. [6] 
(2022) 

Review of sizing, optimization 
& energy management 

Cost, efficiency, 
reliability 

Broad review; lacks 
implementation 

Peng et al. [7] 
(2025) 

Simulation of PV impact on 
wind turbine performance 

Interaction effects on 
efficiency 

No optimization; 
simulation-only 

Sabri et al. [8] 
(2024) 

Nonlinear back-stepping 
control for hybrid systems 

Efficiency, stability 
improvement 

High control 
complexity; needs real-
time validation 

Ahmed et al. [9] 
(2024) 

Regression + ML models for 
solar PV prediction 

Accuracy (R², RMSE) Limited to solar PV, 
not integrated hybrid 

Monika et al. [10] 
(2024) 

Study of measurement 
accuracy & stability 

Accuracy, system 
stability 

Small-scale study; 
lacks optimization 

Ben Jemaa et al. 
[11] (2014) 

Fuzzy PSO for optimum 
sizing 

Cost minimization, 
reliability 

Early study; lacks 
modern validation 

Shah et al. [12] 
(2021) 

Multi-objective optimization 
for Arctic hybrid system 

Reliability, cost, 
storage performance 

Region-specific; 
limited scalability 

Staden et al. [13] 
(2022) 

Off-grid PV-wind-battery 
design 

Energy availability, 
reliability 

Focused on off-grid 
only 

Chauhan & 
Dwivedi [14] 
(2017) 

PSO-based sizing of 
PV/wind/biomass hybrid 

Cost, performance 
trade-off 

Computational burden; 
older algorithm 

Eniola et al. [15] 
(2025) 

Impact of wind speed 
variability on hybrid wind-
hydrogen microgrid 

Reliability, optimal 
sizing 

Hydrogen integration 
adds cost; uncertain 
economics 

George et al. [16] 
(2023) 

Modified dragonfly algorithm 
for sizing 

Cost, energy balance, 
efficiency 

Needs real-time 
deployment validation 

Tiwari & Dubey 
[17] (2015) 

Methodology for optimal 
sizing of wind-solar systems 

Energy adequacy Simplified 
methodology, lacks 
advanced optimization 

Güven et al. [18] Hybrid metaheuristic multi- Cost, emissions, Computationally 
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(2023) objective optimization reliability intensive 
Vafaeva et al. [19] 
(2024) 

PSO for microgrid sizing Optimal sizing, 
performance 

Lacks inclusion of 
storage systems 

Abid et al. [20] 
(2022) 

Artificial hummingbird 
algorithm for renewable 
planning 

Reliability, planning 
under uncertainty 

Algorithm novelty but 
limited hybrid focus 

Lodin et al. [21] MATLAB/Simulink 
modelling of hybrid system 

Simulation outputs, 
feasibility 

No optimization, only 
basic simulation 

 
3 Problems Identifications for Research  
Based on the highlight a pressing need for more integrated, scalable, and experimentally validated research 
in the domain of hybrid solar–wind energy systems. While existing studies offer valuable insights into 
optimization techniques, simulation frameworks, and performance metrics, they often fall short in 
addressing real-world applicability. Many methodologies rely on simplified assumptions, lack dynamic 
optimization, or are constrained by computational complexity, making them impractical for deployment in 
diverse geographic and climatic conditions. Furthermore, several approaches focus narrowly on either solar 
or wind components, neglecting the synergistic behavior and control challenges inherent in hybrid 
configurations. The absence of real-time validation, limited scalability, and region-specific case studies 
further restrict the generalizability of findings. Additionally, the integration of advanced algorithmssuch as 
fuzzy logic, machine learning, and metaheuristicsremains underutilized in practical hybrid system design, 
often lacking robust experimental support.  
      Existing design methodologies often lack dynamic optimization and fail to account for real-time 
variability in renewable resources. Most approaches rely on static assumptions or generalized models, 
limiting their effectiveness in capturing the fluctuating nature of solar irradiance and wind speed. The 
proposed MATLAB-based framework addresses this gap by integrating Grid Search optimization over a 
24-hour simulation period, enabling precise tuning of key parameters such as PV panel count and wind 
speed scaling. However, the challenge remains in systematically identifying optimal configurations that 
balance reliability, efficiency, and adaptability under diverse operating conditions. This research problem 
centers on developing a robust, data-driven strategy that couples system modeling with machine learning–
based optimization to enhance the performance and flexibility of hybrid renewable energy systems.These 
gaps underscore the need for a comprehensive research framework that combines multi-objective 
optimization, real-time simulation, and adaptive control strategies to enhance the reliability, efficiency, and 
economic viability of hybrid renewable energy systems under uncertain and variable operating conditions. 
 
4. Proposed Hybrid Solar-Wind Power System 
The proposed methodology is to validate the impact of wind speed and design the optimization based 
optimal sizing of the hybrid HSW-RES system. The proposed methodology employs a MATLAB-based 
framework for the design and performance evaluation of a hybrid solar–wind energy system, integrating 
optimization techniques to enhance reliability and efficiency for optimal sizing. Specifically, the research 
applies a Grid Search optimization approach to identify the optimal system configuration by adjusting two 
critical variables: the number of photovoltaic (PV) panels and the wind speed scaling factor. The 
optimization is conducted over a 24-hour simulation period, ensuring that the dynamic variations in 
renewable energy generation are accurately captured. This process not only facilitates the determination of 
the most effective operating conditions but also enables the visualization of the hybrid output impact under 
varying wind characteristics. By coupling system modeling with ML based optimization, the methodology 
provides a systematic and data-driven strategy for improving hybrid renewable energy system design, 
supporting both performance maximization and operational flexibility. 
The design parameters used for the study are defined as given in the Table 3.  

Table 3 Parameter of Wind Turbine system 
 

Parameter Value Unit 
Cut-in wind speed (Vcut_in) 3 m/s 
Rated wind speed (Vrated) 12 m/s 

Cut-out wind speed (Vcut_out) 25 m/s 
���� �� ℎ���������

 24 h 
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Rated power of solar PV ��������
 300  W 

���������������  randomly 
selected for a day 

[0, 0, 0, 0, 0, 100, 300, 500, 700, 850, 950, 1000, 
980, 800, 600, 400, 200, 50, 0, 0, 0, 0, 0, 0 

W/�� 

Air density  (����) rho_air = 1.225 kg/m^3 
Rated power of Wind system  ����� �����

=2000 W 

Rotor radios R  R=2 m 
Total battery bank capacity ����������

= 500 Ah 

   
Load profile Load demand 

l����������
 

[500, 450, 400, 400, 450, 600, 800, 1000, 1200, 
1500, 1800, 2000, 2200, 2000, 1800, 1500, 1200, 
1000, 800, 700, 600, 550, 500, 500]; 

W 

 
Block diagram inFigure 3 illustrates the proposed solar–wind hybrid power system simulation framework, 
which integrates renewable energy sources to ensure a reliable and stable power supply. The system 
combines power from a wind generator and PV panels, both of which are equipped with rectifiers to 
convert variable AC or DC outputs into a stable DC link. This combined DC power is then processed by an 
inverter, which converts the energy into AC form suitable for grid or load applications. To ensure voltage 
regulation and compatibility with grid standards, the inverter output is further conditioned through a 
transformer, providing the appropriate voltage level for end-use. It can be observed from the Figure 3 that 
final system integrate solar PV and Wind system using rectifier circuit and pass it to inverter for power 
storage and transformer coupling is used for grid integrations.  

 
Figure 3   block diagram of the hybrid solar wind system architecture 

The system architecture as in Figure 3 highlights the complementary nature of solar and wind energy, 
where fluctuations in one source can be compensated by the other, thereby improving overall reliability and 
efficiency. Additionally, the use of power electronic converters, including rectifiers, inverters, and 
transformers, ensures efficient energy conversion and quality assurance of the supplied power. This 
proposed hybrid configuration forms the basis for subsequent simulation, optimization, and performance 
evaluation. 
The Figure 4 have presented the Matlab Simulink representation of the Wind energy system as validated 
and tested for wind speed and torque performance. Similarly, model for solar PV system as validated is 
given in the  
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a) hybrid Simulink model validated 
Figure 4 Schematic-model of the basic Solar-wind hybrid energy system as validated 

4.2 Mathematical modeling of proposed HSW-RES system  
Section presented the mathematical mudsling for the proposed hybris system simulation.  
1. Solar PV Power Generation 
The solar PV output power at hour i is: 

���(�) = ��� ⋅ ���, ����� ⋅
�(�)

����
                                                  (3) 

 where ���  = number of PV modules 

Various design parameters are used for the investigation in this work. �(�) is solar irradiance at  ���hour�/
��.  ���� is standard irradiance =1000�/��. 
with a non-negativity constraint: 

���(i)= ��� (0, ���(�))   (4) 

2. Wind Power Generation 
For each hour i, the wind turbine power is divided in to three regions: 

�����(�) = �

0                                           ���  �(�) < ������
  �� �(�) > ���� ���

����� ⋅
�

�
�����(�)�           ���               ���� ��

≤ �(�) < ������

����� ⋅ ����� �����
,         ���               �(�) ≥  ������

(5) 

Power is also bounded by 
�����(�) ≤ ����� ⋅ �����,�����                                                  (6) 

3. Total Renewable Power 
����(�) = ���(�) + �����(�) 

4. Load Demand & Net Energy Balance 
Effective load demand considering inverter efficiency: 

�����(�) =
�����(�)

����
                                                             (7) 

The net energy balance per hour is calculated as:  
����(�) = ����(�) − �����(�)                                                    (8) 

5. Battery State of Charge (SOC) Dynamics 
Initial conditions are;  

���(0) = ����������     ,     ������ = 1 − ������                           (9) 
 Excess Energy (Charging) is defined as 

�� ����(�) ≥ 0 

���(�) = ���(� − 1) + ���� ⋅ ����(�) ⋅
���

����
                               (10) 

�� ��� > 1:���(�) = 1, ����������(�) = ����(�) − ((���(�) − 1) ⋅ ���� ⋅ ����)    (11) 
 

Various design parameters are used for the investigation in this work.  
 
4.3 Design and Simulation Parameters  
aimed to define key concepts and definitions related to the Wind Turbine Power Curve and Inverter FFT 
Analysis: 
4.3.1 Wind Turbine Parameters 
Rated Power(������ �

): The maximum power output a single wind turbine is designed to produce. The value 
is set to 2000 Watts (W). 
Cut-in Wind Speed (���� ��

):  The minimum wind speed at which the turbine starts to generate power. The 

value is 3 m/s. 
Rated Wind Speed (������): The wind speed at which the turbine reaches its rated (maximum) 
power output. The value is 12 m/s. 
Cut-out Wind Speed(�������

): The maximum wind speed at which the turbine is shut down to prevent 

damage. The value is 25 m/s. 
Air Density(����): The mass of air per unit volume. The script uses a standard value of 1.225 kg/m³. 
Rotor Radius(������) : The radius of the turbine's rotor blades. The value is 2 meters (m). 
Power Coefficient(��): A measure of the wind turbine's efficiency in converting the kinetic energy of the 
wind into electrical power. The script uses a value of 0.4. 
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Swept Area(������):  is the total area covered by the rotor blades as they spin depends on radius of rotor 
R, 
 
4.3.2 Power Curve Regions 
Region 1 & 4: These regions correspond to wind speeds below the cut-in speed (� < ������

) or it is above 

the (� > ���� ���
)cut-out speed. Under these regions, the power output is zero. 

Region 2:This is the aerodynamic power generation region, where wind speed is between the cut-in and 
rated speeds(������

≤ � ≤ ������). the power P is calculated using equation (1).  

Region 3: In this region, the wind speed is(������ ≤ � ≤ ���� ���
) is between the rated and cut-out speeds 

Under the region 3 turbine produces its constant rated power. 
 
4.3.3 Inverter Performance Analysis Concepts 
In order to investigate the inverter performance, the THD is evaluated for the solar PV system final output 
before grid for HSW-RES system. The impact of variable wind speed is investigated for THD evaluation.    
Fast Fourier Transform (FFT): A mathematical algorithm used to analyze the frequency components of a 
signal. The FFT analysis is proposed to usein order to find the frequency spectrum of an inverter's output 
current for THD analysis. This method quantifies the presence of harmonics relative to the fundamental 
frequency in a signal, providing a measure of signal distortion. 
Total Harmonic Distortion (THD): A measurement of the harmonic distortion present in a signal, defined 
as the ratio of the sum of the powers of all harmonic components to the power of the fundamental 
frequency. It is a key metric for evaluating inverter performance. 

��� =  ��
������

��

��
� � ∗  100%                                                 (12) 

Where: 
��= RMS voltage of harmonic components (h = 2, 3, 4, ...) 
�� = RMS voltage of the fundamental frequency component 
Steps to calculate THD using FFT are; 
1. Perform FFT on the signal to obtain frequency components 
2. Identify the fundamental frequency component 
3. Calculate RMS values for fundamental and harmonic components 
4. Apply the THD formula using the RMS values 
5. Express the THD result as a percentage % if required. 
 
Fundamental Frequency: (�����������) is defined as the primary operating frequency of the AC signal. 
The work uses a value of 50 and 60 Hz. 
Harmonics: Unwanted, higher-frequency components in the AC signal that are integer multiples of the 
fundamental frequency. The research introduces 3rd, 5th, and 7th harmonics into its synthetic signal to 
simulate non-ideal inverter behavior. 

5. Expected Results  
This section has presented the results of series of experiments performed for performance assesssetb f 
HSW-RES system. The waveform of the current simulationfor the inverter analysis is given in the Figure 5. 
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Figure 5 Simulated current waveform for the  of the various HSWES waveforms  
Figure 5 shows the current waveform (I) of an electrical system plotted against time (s) over a duration of 
0.1 seconds. The waveform is sinusoidal in nature, oscillating between approximately +9 A and –9 A, 
indicating an alternating current (AC) signal. The periodicity suggests a frequency of around 50 Hz, which 
is typical of grid-based or inverter-generated AC signals. The waveform is smooth and symmetric about the 
horizontal axis, reflecting a stable and distortion-free sinusoidal current. 
 
5.1 Results of SOC and Excess Energy 
Figure 6 illustrates the comparative performance of three optimization approaches—Grid Search, PSO, and 
GA optimizations in terms of total excess energy (Wh) and final battery State-of-Charge (SOC). 

 
a) total excess energy results   b) the final SOC of battery   

Figure6Simulated results of excess and the battery charging for HSWES model 
It is clear from Figure 6(a) that the total excess energy generated by the system varies across the three 
optimization approaches. The Grid Search method produces the highest excess energy, slightly above 
12,000 Wh, whereas both PSO and GA result in lower excess values, around 11,000 Wh. This suggests that 
the deterministic Grid Search method explores all possible parameter combinations exhaustively, which 
may lead to solutions that maximize generation potential, even at the cost of increased surplus energy. 
On the other hand, PSO and GA, being metaheuristic methods, search for near-optimal solutions through 
iterative exploration and exploitation, which often balance between generation, storage, and demand. Their 
slightly reduced excess energy indicates a more efficient matching of energy generation with consumption 
and storage capacity, reducing unnecessary surplus. This could imply better system utilization and reduced 
curtailment losses, making PSO and GA more practical in scenarios where minimizing unused energy is 
prioritized.Therefore, while Grid Search ensures maximum generation, it may lead to over-sizing or over-
production, which could increase system costs and waste. In contrast, PSO and GA demonstrate an ability 
to achieve nearly the same performance with a more balanced energy profile, highlighting their potential 
for cost-effective and sustainable system operation. 
As shown in Figure 6(b), the final battery State of Charge (SOC) values remain almost identical across all 
three optimization approaches—Grid Search, PSO, and GA—with each reaching approximately 0.98. This 
high and consistent SOC level indicates that the system configuration, regardless of the optimization 
strategy employed, is capable of maintaining sufficient energy storage and ensuring battery availability for 
demand coverage.The similarity in SOC values demonstrates that the choice of optimization method does 
not significantly impact the final charging status of the battery, implying robustness and reliability in 
storage utilization across different strategies. This is an encouraging result, as it suggests that even when 
the optimization process focuses on reducing energy surplus (as seen with PSO and GA), the battery is still 
effectively charged to near-maximum capacity.From a system operation perspective, maintaining a SOC 
close to 1 (or 100%) ensures that the energy storage system operates with a high degree of resilience and 
backup reliability, minimizing the risk of power shortages during fluctuations in renewable generation or 
demand pes. 
 
5.2 Impacts of Wind Speed Profiles 
This section varies the wind speed �������� �����

= [5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 10, 8, 6] selected on average random wind speeds across the day, and power curves are evaluated. 
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A. Wind Power curves  
The impact of the wind speed on wind system rated power curves are evaluated. Figure 7 illustrates the 
power curve of a wind turbine as a function of wind speed.  

 
Figure 7 Performance investigation of Wind turbine Power curves 

The curve begins at the cut-in speed (around 4 m/s), where the turbine starts generating power. As wind 
speed increases beyond this threshold, the power output rises sharply in a nonlinear manner, reaching the 
rated power of approximately 2 kW at around 12 m/s. Beyond 12 m/s point, the output remains constant at 
the rated capacity, despite further increases in wind speed, highlighting the turbine’s control mechanisms 
that prevent overloading. When the wind speed reaches the cut-out speed (around 25 m/s), the turbine 
automatically shuts down to protect its structural integrity, causing the power output to drop abruptly to 
zero. This characteristic curve effectively demonstrates the operational range of the turbine, including its 
efficient working region between cut-in and cut-out speeds, while also reflecting the limitations imposed by 
safety and design considerations. 
 
B. Wind speed and Optimal sizing: As major contribution researchproposed ML model to predict the 
results of impacts of wind speed and optimal sizing of ML based HSW-RES system. The Solar PV system 
wind profile is varied and base case and optimal case of wind speed are compared. as another plot the 
impact of wind speed are compared for the total hybrid system response as shown in the Figure 8. Four 
different wind load profiles are compared in the Figure for optimal performance.  
 

 
Figure 8Results of Impacts of Wind speed and Optimal sizing of ML based HSW-RES system 

 
The Figure8 a) (upper Figure) presents a comparative analysis of wind speed profiles over a 24-hour 
period, highlighting the difference between a linear wind speed model and an optimized wind profile. The 
linear wind speed (1-D), shown as a black dashed line, exhibits a steady increase during daylight hours, 

0 5 10 15 20 25 30

Wind Speed (m/s)

0

1

2

3

4

5

6
Wind Turbine Power Curve (Ideal)

Power Output

V
cut-in

V
rated

V
cut-out

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 10, 2025 PAGE NO: 84



peaking around hour 18 before tapering off. In contrast, the optimal wind profile (2-D), represented by a 
solid blue line, follows a similar trend but consistently maintains slightly lower wind speeds throughout the 
day. This refined profile reflects the impact of wind speed scaling in optimization, suggesting a more 
realistic and performance-aligned representation of wind behavior. The reduced wind speed in the 
optimized profile likely contributes to improved system reliability and efficiency by minimizing excess 
generation and aligning better with load demands.Figure 8 b) (as in lower Figure) has presented the impact 
of wind characteristics on total hybrid renewable power. Figure illustrates how varying wind conditions 
influence the total power output of HSW-RES system over a 24-hour period. Four profiles are plotted for 
the Low Wind (5 m/s), Raw Wind (7 m/s), Idealized Renewable Load (IRL)optimal, and load demand. 
Numerically, the low wind (5 m/s) profile (red line) consistently underperforms, with peak power output 
reaching only around 40 kWh, resulting in frequent shortfalls below the load demand curve. The raw wind 
(7 m/s) profile improves generation, peaking near 55 kWh, but still shows mismatches during early and late 
hours. In contrast, the IRL optimal profile closely tracks the load demand curve, especially between hours 8 
to 20, with peak output approaching 65–70 kWh, indicating superior alignment and reduced excess or 
deficit. 
Comparatively, Figure 8(b) demonstrates that the IRL Optimal configuration achieves the best balance 
between generation and demand, minimizing both energy shortfall and surplus. This suggests that 
optimized wind scaling not only enhances system responsiveness but also improves overall efficiency and 
reliability. The numerical advantage of the IRL Optimal profileyielding up to 25–30% higher peak output 
than the low wind casevalidates the effectiveness of the optimization strategy in hybrid system design. 
 
5.3 Optimization Methods Results for Optimal Sizing  
In this proposed research performance of the three optimization methods such as Genetic Algorithm (GA), 
PSO, and Grid Search methods are compared for the optimizing the hybrid system sizing. The primary goal 
is to find the optimal number of solar panels (PV) and a wind speed scaling factor to best meet a given 
hourly load demand while managing battery state of charge.These models are sequentially represented as 
follows: 
a) Genetic algorithm (GA): the Genetic Algorithm (GA) is implemented to find the optimal number of 

PV panels (���) and a wind speed scale factor (��) for aHSW-RES system. Its implementation begins 

by defining an objective function, �����, which wraps a simulation function and a scoring function. 

This function����� is designed to be minimized by the GA solver, so it returns the negative of a 
performance score.  

The GA process begins by defining the initial parameters like;   
Initial population size: The number of individuals in the population for each generation is set to 40. 
Crossover and mutation rates: Probabilities that control how new solutions are generated from existing 
ones. 
Termination criteria: The condition that determines when the algorithm stops, such as a maximum number 
of generations (iterations). Termination criterion for the Genetic Algorithm (GA) as the maximum number 
of generations. The GA will stop after it has run for 80 generations or (iterations). 
The search space is constrained with lower bounds of [5, 0.5] and upper bounds of [50, 2.0] for the number 
of PV panels and the wind scale factor, respectively. 
      The Flow chart of the GA based optimal sizing is illustrated in the Figure 9 a). The process is 
probabilistic in nature and outcomes depends on population size and iteration counts.   
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a) Genetic Algorithm Flow chart for optimal sizing b) flow chart of PSO based optimization 

Figure 9 flow chart of GA and PSO based optimization for optimal sizing 
b) Particle Swarm Optimization (PSO) 

A metaheuristic PSO optimization algorithm explores the solution space to find the optimal combination of 
PV panels and wind scale. the Flow chart of PSO based optimization is illustrated in the Figure 9 b). The 
optimization is configured with specific options: a swarm size of 40 particles and a maximum of 120 
iterations. the objective function ������  is called and minimized for optimal sizing performance. The 
search space is defined by samelower and upper bounds as used for GA as lower bounds=[5, 0.5] and upper 
bounds= [50, 2.0] for the two variables.the optimization solver is iteratively executed and after the solver 
finds the optimal solution vector ���� , the first value is rounded to get an integer for (���), and the second 
value is used as the wind scale. These optimal values are then used in a final simulation to calculate and 
store the resulting deficit, excess, and final State of Charge (SOC). 
 
c Grid Search Optimization: 
A brute-force method that exhaustively checks a predefined discrete range of values for the number of PV 
panels (���) and the wind speed scale factor (��). It iterates through every possible combination to find the 
one that yields the best performance score. The model flow chart is given in Figure 10as; 

 
Figure 10 Flow chart of the proposed Grid Search method for the HSW-RES system 

Figure 10 illustrates the flowchart representing the grid search algorithm, a systematic approach widely 
used for hyperparameter tuning in machine learning models. The procedure begins with the initialization of 
a predefined parameter grid, alongside the assignment of baseline values for performance tracking, where 
the best score is initially set to negative infinity and the best parameter configuration to None. The 
algorithm then explores each parameter combination within the grid through an iterative process. In every 
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iteration, the model is trained and evaluated; whenever the obtained score surpasses the previously recorded 
best score, both the score and the associated parameter set are updated accordingly. This process continues 
exhaustively until all possible combinations have been assessed. The flowchart highlights the deterministic 
and exhaustive nature of grid search, underscoring its ability to guarantee the identification of the optimal 
parameter configuration within the specified search space. Despite its computational intensity, grid search 
remains a fundamental technique in model optimization and selection, contributing significantly to 
performance improvement in ML solution in Hybrid power system design applications. 
 
5.3.1 Results of various Optimization Methods 
The results are expected to evaluate the performance by keeping the different wind speed under 
consideration for wind torque variation and the impact on the HSW-RES system is investigated. It is also 
proposed to apply ML based optimization methods for achieving higher sizing and power output.  

 
Table 4: Grid Search Optimization Results Summary 

Parameter Value 

Search Space 10 × 16 combinations 

Best��� 10 

Best Wind Scale 0.90 

Best Score 18.0168 

Table 4 summarizes the outcomes of the grid search optimization process. The algorithm explored a search 
space consisting of 160 parameter combinations (10 × 16), ensuring a comprehensive evaluation of possible 
configurations. From this exploration, the optimal values were identified as ��� = 10 and a wind scale 
factor of 0.90, which together yielded the highest performance score of 18.0168. These results highlight the 
effectiveness of the grid search method in systematically identifying the most suitable parameter set, 
demonstrating its reliability in optimizing hybrid renewable system configurations. 
Table 5 presents the summary of Particle Swarm Optimization (PSO) performance across successive 
iterations. The results show a steady improvement in the objective function, with the best fitness value 
converging to f(x) = –18.10. Initially, the mean fitness values were relatively high, but as the iterations 
progressed, the swarm exhibited significant convergence, reflected in reduced mean values and minimal 
stall iterations toward the final stages. The optimization process identified the optimal system configuration 
at ��� = 7 and a wind scale factor of 0.881, yielding the best score of 18.1021. These outcomes 
demonstrate the efficiency of PSO in navigating the search space and achieving rapid convergence toward 
the global optimum. Compared to exhaustive methods such as grid search, PSO offers a more 
computationally efficient approach while still ensuring robust parameter selection and performance 
enhancement. 

Table 5: PSO Optimization Results Summary 
 

Iteration Function Count Best f(x) Mean f(x) Stall Iterations 
0 40 -17.79 297.1 0 
5 240 -18.05 934.4 0 
10 440 -18.08 792.9 2 
20 840 -18.10 15.49 3 
30 1240 -18.10 -17.42 1 
36 1480 -18.10 -17.95 0 

Best Result — -18.10 — — 
Best Npv — 7 — — 

Best Wind Scale — 0.881 — — 
Best Score — 18.1021 — — 

 
Table 6 present optimization performance of GA across multiple generations. The algorithm demonstrates a 
progressive improvement in fitness values, with the best ����� function converging to f(x) = –18.10.  

Table 6: GA Optimization Results Summary 
 

Generation Function Count Best f(x) Mean f(x) Stall Generations 
1 80 -17.87 351 0 
7 308 -18.09 -17.89 0 

20 802 -18.10 -18.05 0 
40 1562 -18.10 -18.10 10 
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60 2322 -18.10 -18.08 3 
63 2436 -18.10 -18.08 6 

Best Result — -18.10 — — 
Best Npv — 7 — — 

Best Wind Scale — 0.88101 — — 
Best Score — 18.1021 — — 

 
Early generations exhibited higher mean fitness values, but as evolution progressed, the population 
converged toward stability, with both best and mean values consistently aligning by generation 20. While 
occasional stall generations were observed, the algorithm-maintained convergence efficiency, ultimately 
reaching the global optimum without significant divergence. The optimal configuration was achieved at 
��� = 7 and a wind scale factor of 0.88101, yielding the best score of 18.1021. These results confirm the 
effectiveness of GA in achieving robust convergence and optimal system design. Compared to 
deterministic approaches such as grid search, GA provides flexibility in exploring the solution space, while 
its convergence characteristics closely parallel those of PSO, reinforcing its suitability for renewable 
energy system optimization. 
Performance score calculation is based on a performance metric that considers multiple factors. It is 
designed to be maximized, so a higher score indicates better system performance. The score isathletically 
calculated as: 
����� = (������������ ���

− ������) ∗ �������� ���
− �������������� − (�������������/1000) ∗ 0.1 (13) 

The components of the score are: 
1. Battery State of Charge (SOC) term: (������������ ���

− ������) ∗ �����������
. This rewards 

higher final SOC values, encouraging better battery utilization. 
2. Energy deficit penalty: - �������������� , This penalizes any energy shortfall, encouraging the 

system to meet demand. No deficit is considered for simulation. 
3. Excess energy penalty: - (������������� /1000)*0.1; This slightly penalizes excess energy 

production, encouraging efficient resource use. 
The score must be high to indicate better performance. A higher score suggests: 

 Higher final battery state of charge 
 Lower energy deficit (better meeting of demand) 
 Lower excess energy (more efficient use of resources) 

 
Table 7: Comparative optimization methods Optimal Results 

 
Method ��� Wind Scale Total Deficit (Wh) Total Excess (Wh) Final SOC Score 

Grid Search 10 0.90 0 11,832 1 18.017 

PSO 7 0.881 0 10,979 1 18.102 

GA 7 0.88101 0 10,979 1 18.102 

 
Table 7 provides a comparative overview of the optimal results obtained through Grid Search, PSO, and 
GA. All three methods successfully eliminated energy deficit (������������  = 0 Wh) and maintained the 

battery’s final state of charge at a fully sustained level (SOC = 1). However, variations are observed in 
excess energy and optimization scores. Grid Search produced the highest excess energy output (11,832 
Wh), slightly higher than the 10,979 Wh obtained by PSO and GA. Despite this, PSO and GA achieved 
marginally higher optimization scores (18.102) compared to Grid Search (18.017), attributed to their finer 
exploration of the search space.While PSO and GA demonstrate superior convergence efficiency with 
fewer PV units (���= 7) compared to Grid Search (���= 10), the effectiveness of Grid Search lies in its 
deterministic and exhaustive evaluation of all possible parameter combinations. Unlike heuristic 
approaches, Grid Search guarantees identification of the optimal solution within the defined search space, 
ensuring robustness and reproducibility. This makes Grid Search particularly valuable for smaller or 
moderate search spaces (as in microgrid) where computational cost is manageable, offering a reliable 
baseline against which the performance of heuristic methods can be validated. 
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Figure 11Impact of Wind speed on solar-wind hybrid system for ML models performance investigation 

The impact of wind speed optimization on hybrid system output is illustrated in Figure 11, using three 
different optimization methods as Grid Search, PSO, and GA. Performance is compared against the 
system’s load demand profile. The results reveal distinct variations in renewable power generation 
depending on the optimization strategy. Grid Search (with ���=10, scale factor sf = 0.90) achieves 
consistently higher power output throughout the day, particularly during peak solar and wind resource 
hours (around 6–8 hours and 18–20 hours), where its generation exceeds 4 kW. In contrast, both PSO and 
GA (with���=7, sf=0.88)show lower production levels, with noticeable underperformance during midday 
hours (10–15 hours) when output falls closer to the load demand curve. Despite these differences, all three 
methods successfully maintain renewable generation above demand during peak periods, ensuring supply 
reliability. Overall, the figure demonstrates that while heuristic methods (PSO and GA) converge to similar 
solutions with reduced PV capacity, Grid Search provides superior overall energy output, highlighting its 
effectiveness in maximizing renewable power availability across the daily cycle. 
 

Table 8 Performance comparison of the all three Optimization Methods 
Method ��� Wind Scale ������������(Wh) �����������(Wh) Final SOC Score 

Grid Search 10 0.9 0 46,319 1 14.568 
PSO 5 0.5 7,075.3 1,863.6 0.44233 -7,069.6 
GA 5 0.5 7,075.3 1,863.6 0.44233 -7,069.6 

 
Table 8 presents a comparative analysis of the three optimization methods, Grid Search, PSO, and 
GAapplied to the hybrid energy system. The results indicate that Grid Search outperforms both heuristic 
methods in all evaluated metrics. Specifically, it achieves a total deficit of 0 Wh, ensuring that the energy 
demand is fully met, and delivers the highest total excess energy of 46,319 Wh, reflecting superior energy 
generation and utilization. Additionally, the final state of charge of the battery reaches its maximum value 
(SOC = 1), highlighting effective energy storage management. The overall optimization score of 14.568 
further confirms its superior performance. In contrast, both PSO and GA exhibit significant energy deficits 
(7,075.3 Wh), much lower excess energy (1,863.6 Wh), and incomplete battery charging (SOC = 0.44233), 
leading to substantially negative scores (-7,069.6). These findings demonstrate that while heuristic 
algorithms like PSO and GA can offer computational efficiency, the deterministic and exhaustive 
evaluation of Grid Search ensures optimal system performance, particularly when the search space is 
manageable. 
 
5.4 THD of Inverter Evaluation 
The output current is evaluated under synthetically generated distortion for THD analysis. The resulting 
FFT plot is configured to focus on the low-order frequency range (0-500 Hz), which is most relevant for 
power quality analysis. This targeted visualization helps in easily identifying the magnitudes of the 
fundamental frequency and the unwanted harmonic components.Table 9 presents the evaluated 

T
o

ta
l R

e
n

e
w

a
b

le
 P

o
w

e
r 

(k
W

)

Technische Sicherheit ISSN NO: 1434-9728/2191-0073

Volume 25, Issue 10, 2025 PAGE NO: 89



performance of the inverter current in terms of harmonic distortion analysis. The fundamental operating 
frequency is observed at 60 Hz, with a corresponding fundamental RMS current of 7.07 A, indicating stable 
current delivery at the base frequency. The calculated % THD is 0.3%, which is well within the acceptable 
limits for power quality standards (typically below 5%). This ensuring efficient operation, reduced losses, 
and reliable performance of the hybrid energy system. The respective bar plots are presented in Figure 12. 

Table 9 the performance of evaluated THD 
Parameter Value 

Fundamental Frequency 60.0 Hz 
Fundamental RMS Current (Conceptual) 7.07 A 

Calculated Total Harmonic Distortion (THD) 0.3 % 

 
a) THD stem plot                            b) Bar plot of THD evaluation  

Figure 12 Performance evaluation of the THD of the Inverted current 
5.5 ML based methods prediction Results for Solar Power 
This section the additional experiment is performed to compare the performance of various ML regression-
based prediction models for solar PV power output profile. The daily variation in solar power generation is 
presented in Figure 13 comparing actual measured values with predictions from five regression models: 
Linear, Support Vector Regression (SVR), Decision Tree, Ensemble, and Neural Network (NN). The 
measured curve (blue line) shows a clear diurnal pattern, with output beginning to rise around 8:00 AM, 
reaching its maximum between 12:00 PM and 2:00 PM, and gradually declining to nearly zero in the 
evening. Among the predictive approaches, the NN model provides the closest agreement with the 
measured data, particularly during peak hours, successfully replicating both the magnitude and curvature of 
the solar output. 

 
Figure 13 Performance of ML prediction methods for nonlinear solar data 

 
The Linear regression substantially underestimates the peak and fails to capture the inherent non-linear 
dynamics, leading to notable discrepancies during midday. The SVR model achieves moderate 
improvement over the Linear model but continues to lag in accurately reproducing the peak region. The 
Decision Tree model approximates the overall shape but introduces abrupt fluctuations, likely attributable 
to overfitting or limited smoothness in its predictions. In contrast, the Ensemble model provides a more 
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balanced representation, with improved smoothness and peak estimation, yet still does not match the 
fidelity of the NN based model.It can be observed the NN offered the maximum of 247 W power output.  

 
a) training MSE error performance       b) Parametric performance during Validation 

Figure 14 results for the NN modeltraining 
 
6. Conclusion and Future Work  
The study demonstrates that hybrid solar–wind systems effectively enhance energy reliability and stability, 
with Grid Search optimization using ten PV panels identified as the optimal sizing solution, ensuring 
efficient performance while maintaining inverter power quality and accommodating wind speed variability. 
sequence of experiments including impact of wind seeped on wind power corves, optimal sizing based on 
ML optimization methods and also the inverted current THD analysis are carried out. Following main 
conclusions are drawn from the studies. 

 This study systematically evaluated the performance of three optimization techniquesGrid Search, 
PSO, and GAfor the design and operation of proposed HSW-RES system design. 

 The Grid Search method yielded the highest level of excess energy generation, whereas PSO and 
GA produced lower excess energy but demonstrated superior resource utilization efficiency. 

 It is concluded that optimization method has no impact on battery charging and despite 
methodological differences, the final battery State of Charge (SOC) remained nearly identical across 
all approaches, stabilizing around 0.98, which reflects reliable storage management. 

 The influence of wind speed on turbine power curves and its role in the optimal sizing of HSW-RES 
was analysed, highlighting its critical impact on system performance. 

 Machine learning (ML) techniques were employed to predict the effects of wind speed variations 
and to assist in the optimal sizing process of the hybrid system. 

 The inverter’s current quality was assessed, showing a very low total harmonic distortion (THD) of 
0.3%, thereby confirming compliance with power quality standards and efficient system operation. 

 Comparative analysis of ML regression models for solar PV power prediction revealed that the 
Neural Network (NN) achieved the closest correspondence with 247 W measured values, 
outperforming other models in accuracy. 

 
6.1 Future Work           

In future incorporating other renewable energy sources, such as biomass or small-scale hydro, could further 
enhance system reliability and energy efficiency. Developing real-time or adaptive optimization algorithms 
that respond dynamically to changing weather and load conditions could improve system performance 
beyond static optimization methods is scope of future too.Another scope is to investigating the interaction 
of HSW-RES with the main grid, including smart control, demand response, and energy storage 
management, can optimize energy delivery and stability. 
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