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Abstract: Hybrid solar—wind renewable energy systems (HSW-RES) offer a reliable alternative to standalone
renewable technologies by mitigating intermittency and improving overall system stability. This study presents a
comprehensive framework for evaluating and optimizing HSW-RES performance, with particular emphasis on
wind speed variability and inverter power quality. The methodology integrates aerodynamic modeling, power
quality assessment, and advanced optimization techniques to provide a rigorous analysis of system behavior.
The wind turbine power curve is derived using aerodynamic equations, accounting for critical parameters such
as cut-in, rated, and cut-out wind speeds. Inverter performance is evaluated through Fast Fourier Transform
(FFT) and Total Harmonic Distortion (THD) analysis, ensuring compliance with grid standards and minimizing
harmonic distortion. System sizing is addressed using multiple optimization methods, including Grid Search,
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), within a flexible optimization framework.
The optimization is conducted over a 24-hour simulation period, ensuring that the dynamic variations in
renewable energy generation are accurately captured. three wind regions are considered based on rated power
threshold. Comparative visualizations of optimization outcomes further enhance the interpretability of results. it
is concluded that Grid search with 10 panels offers the optimal sizing.

Key Words: Hybrid Solar-Wind system, Renewable Energy System, Machine Learning, Solar Inniradance,
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1. Introduction

The design of hybrid renewable energy system by integrating solar and wind system is widely studied in
recent times. these hybrid solar-wind renewable energy systems (HSW-RES)are required to be investigated
under the varying conditions of various design parameters. TheHSW-RES have emerged as a promising
solution to address the intermittency and reliability challenges of standalone renewable sources. Recent
studies emphasize the importance of optimizing these systems across multiple time scales and under
resource uncertainty to ensure energy stability and cost-effectiveness Mingqi et al [1]. The integration of
solar and wind technologies, supported by advanced battery configurations K. Narwat et al [5], enables
continuous power delivery and enhances system resilience. Furthermore, optimization techniques such as
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) have shown significant potential in
improving power flow and operational efficiency M. Thirunavukkarasu et al [3], and Papazoglou et al. [4].
As highlighted by Alam et al. [2], a well-designed hybrid system not only improves energy availability but
also supports sustainable development goals through cleaner energy generation.The performance and
reliability of HSW-RESsystems are highly sensitive to variations in wind speed, making its impact a
critical factor in system design and optimization. Despite the growing adoption of HSW-RES, there
remains a need for comprehensive investigation into how fluctuating wind conditions and
aerodynamicinfluence both energy output and power quality. In particular, understanding the aerodynamic
behavior of wind turbines across varying wind speeds, alongside the inverter’s harmonic response, is
essential for ensuring grid compliance and maximizing system efficiency. This study addresses the gap by
integrating wind speed analysis into a unified framework for evaluating hybrid system performance.

Simulate Power
Hybrid Solar~ ; Quality
Wind Renewab Analysis
Energy System

Performance
Evaluation

Figure 1 basic Simulation andHSW-RES System architecture
Therefore, in this research work proposed basic architecture as is illustrated in the Figure 1. The proposed
methodology integrates both aerodynamic and power quality analyses to provide a comprehensive. Table 1
below presented the abbreviations used in the study.
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Table 1 Abbreviation and Nomenclature of design parameters

Abbreviations Abbreviations

PV Photovoltaic SVR Support Vector Regression

GA Genetic Algorithms PSO Particle Swarm Optimization
HSW Hybrid Solar-Wind HWSES Hybrid Solar-Wind Energy System
RES Renewable Energy generation System RMSE Root Mean Square Error

NN Neural network LR Linear Regression

ML Machine Learning MPPT Maximum Power Point Tracking
HRES Hybrid renewable energy systems DC Direct Current

RBF Radial Basis Function AC Analog Current

LR Linear Regression HOMER | Hybrid Optimization Model for Electrical Renewable energy
THD Total Harmonic Distortion NaN’s Not a Number

The context for this study involves performing two distinct analyses related to a hybrid energy system: one
focusing on a wind turbine's power generation and the other on the performance of a power electronics
inverter.Additionally, research is aimed to investigate various optimization techniques for optimal sizing of
HSW-RES systems. the impact of wind speed variation is primarily considered as context of the design and
investigation.

For evaluation of renewable energy system performance this research firstcalculates and plots the wind
turbine’s ideal power curve using aerodynamic equations, which allows for an accurate representation of
the turbine’s output across varying wind speeds. This step is essential for understanding the operational
characteristics and efficiency of the turbine under realistic conditions. In addition, the methodology
demonstrates the application of Fast Fourier Transform (FFT) and Total Harmonic Distortion (THD)
analysis to assess inverter performance. These techniques are critical for evaluating the frequency spectrum
and quantifying harmonic distortions in the inverter’s output, ensuring compliance with grid standards and
improving overall power quality. By combining aerodynamic modeling with power quality assessment, the
methodology offers a robust framework for analyzing and optimizing renewable energy systems.

1.1 Wind Turbine Power Curve Analysis: This section is significant for predicting and understanding the
performance of a wind turbine under varying wind conditions.By defining key parameters like cut-in, rated,
and cut-out speeds, the script calculates an ideal power curve. The implication is the ability to estimate
energy yield, assess turbine suitability for a specific location, and provide a foundational model for wind
farm power generation studies. Research uses a well-defined, physics-based formula for calculating the
aerodynamic power of a wind turbine. This makes the calculation transparent and easy to understand.The
power calculation is based on the aerodynamic equation
Pyind gero = 0-5 * Pair * A~ Cp - Vspd3 (1)

Where; Pying g, 18 representing aerodynamic power
Dairis the air density, specified as 1.225 kg/m? for this simulation case.

A is the swept area of the windturbine rotor, calculated as

. R, in M2, )
The C, is a 0.4 and is a power coefficient.
The Vpq is defined as the Wind speed in above eq.

1.2 Inverter FFT and THD Methodology:The inverter FFT and THD methodology presented in this
script provides a systematic approach for assessing the quality of power generated by inverters, which are
essential for converting DC power from renewable sources such as solar and wind into grid-compatible AC
power. By employing a Fast Fourier Transform (FFT), the script analyzes the frequency spectrum of the
inverter’s output current, enabling precise calculation of Total Harmonic Distortion (THD). This approach
allows engineers to quantify and identify unwanted harmonics that can lead to equipment malfunctions,
excessive heating, and reduced efficiency.Ensuring low THD is critical, as it serves as a key indicator of a
high-quality, reliable, and grid-compliant inverter, thereby supporting stable and efficient power delivery.as
an limitation the inverter analysis section is a conceptual demonstration using a synthetic signal. In this
study, the performance of a grid-connected hybrid solar-wind (HSW) system is analysed under normal
operating conditions using simulation-based evaluation. The schematic of the proposed HSW system is
illustrated in Figure 1, where the outputs of the individual solar and wind units are combined, processed
through an inverter, and subsequently integrated into the grid via a transformer.
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1.3Contribution of Work

This work makes several key contributions to the optimization of hybrid renewable energy systems. Paper
initially contributed validated the renewable energy system analysis: wind turbine power assessment and
power electronics performance evaluation. The power curve evaluation covers all four operational regions
of an ideal wind turbine: below cut-in, the aerodynamic power region, the constant rated power region, and
above cut-out. This provides a nearly idealized model of turbine behavior.

Paper also contributed to present a comparative analysis of techniqueslike Grid Search, PSO, and GA based
optimization for predicting the effective system sizing. The study incorporates detailed system simulation
and modeling that includes solar PV, wind turbines, battery storage, and load demand, ensuring realistic
performance evaluation. A flexible optimization framework is developed that considers multiple variables,
such as the number of PV panels and wind speed scaling factor, providing a more comprehensive design
approach. A custom scoring function is introduced to balance battery state of charge, energy deficit, and
excess energy production, enabling more practical system performance assessment. The methodology also
generates clear visualizations to compare optimization results and adapts to different optimization
toolboxes. Furthermore, physics-based modeling of wind turbine output and an hourly energy balance
simulation are used to capture accurate system dynamics. Together, these elements establish a robust and
detailed framework for optimizing hybrid renewable energy systems.

As another contribution work demonstrating the methodology for evaluating inverter performance using
FFT based THD analysis over the synthetically generated distortion in inverted output current. It provides a
practical, step-by-step guide on how to analyze a signal for harmonic content. Research provided realistic
simulation of non-ideality by synthetically adding common low-order harmonics (3rd, 5th, and 7th) to an
ideal sine wave, the script effectively simulates the non-ideal behavior of a real-world inverter. This is a
crucial advantage for educational purposes, as it shows what kind of distortions to look for.

The remaining paper is organized to present systematic investigation for the hybrid solar -wind system
design using machine learning training modes. In rest of paper first reviewed the related works of HSW
systems as given in section 2, followed by the summary and problem statements in Section 3. The section 4
has presented the proposed HSW-RES simulation methodology and mathematical modeling. The simulated
outcomes are presented as results of the work in the Section 5. and finally, the section 6 has concluded the
work and also presented the discussion on the scopes for future.

2.0 Related Works and Litterateur

Figure 2 presents a structured classification of hybrid solar—wind systems, dividing them into optimization-
based methods and simulation-based approaches. It highlights key techniques such as Genetic Algorithms,
Particle Swarm Optimization, and MATLAB/Simulink modeling, along with their associated challenges
and problems identifications.

Hybrid Solar-
Wind Systems

I

Simulation-
Based
Approaches

MATLAB/Simulink

Multi-Criteria
Decision-
Making
(NCDM)
Alavi et al.

[ Challenges ]

- Resource intermittency
- Computational comple xity

- Lack of experimental v salidation

- Trade-offs in convergence vs solution
quality

- Integration of stochastic models and
storage systems

Figure 2 Classifications and challenges ofHWS-RES systems modeling
Hybrid renewable energy systems (HRES), particularly solar—wind configurations, have received
significant attention for their ability to improve reliability and mitigate the intermittency inherent in
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standalone renewable sources. Bai et al. [1] (2024) developed an optimization framework that accounts for
multi-time scale energy stability and resource uncertainties, emphasizing the importance of stochastic
modeling for maintaining system stability, though they acknowledge the associated computational
challenges. Alam et al. [2] (2025) investigated the design and simulation of a solar—wind hybrid system,
focusing on generation feasibility and load matching; however, their study does not incorporate a formal
optimization methodology to enhance system performance. Thirunavukkarasu et al. [3] (2023) reviewed
various optimization strategies, including Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA), highlighting their effectiveness for HRES sizing while noting the necessity for experimental
validation. Papazoglou and Biskas [4] (2023) conducted a comparative analysis of GA and PSO within
optimal power flow applications, illustrating the trade-offs between convergence speed and solution
quality, although their study is restricted to power flow optimization rather than integrated hybrid system
design.

The role of energy storage in improving hybrid system reliability has also been studied extensively. Narwat
and Gupta [5] (2022) analyzed combined battery systems with solar—wind HRES, showing improvements
in reliability but raising concerns regarding scalability. Similarly, Ammari et al. [6] (2022) reviewed
control, energy management, and optimization approaches for hybrid systems, emphasizing multi-objective
trade-offs between cost, efficiency, and reliability. Peng et al. [7] (2025) investigated the performance
interaction between PV arrays and wind turbines, highlighting the importance of considering aerodynamic
effects in co-located systems. Sabri et al. [8] (2024) introduced a nonlinear back-stepping control approach,
demonstrating improved efficiency and stability, though the complexity of implementation remains a
barrier. Ahmed et al. [9] (2024) advanced the field by applying hybrid machine learning regression models
for solar PV power prediction, reporting high accuracy, but their focus remained limited to solar rather than
integrated HRES.

Measurement accuracy and system stability are also central themes in recent works. Monika et al. [10]
(2024) studied measurement accuracy for hybrid systems, linking errors to system stability, but their work
was restricted to small-scale systems. Earlier contributions, such as Ben Jemaa et al. [11] (2014), utilized
fuzzy PSO for optimal sizing, offering early insight into intelligent optimization but lacking modern
scalability. Shah et al. [12] (2021) addressed hybrid system design for Arctic regions using multi-objective
optimization, balancing reliability and cost, though their methodology was geographically constrained.
Staden et al. [13] (2022) analyzed off-grid PV—wind—battery hybrids, underlining the importance of system
reliability but restricting their findings to off-grid applications. Chauhan and Dwivedi [14] (2017)
employed PSO for sizing PV—wind-biomass hybrids, demonstrating cost-performance trade-offs while
facing computational challenges.

Recent studies have emphasized hybrid microgrid reliability and integration with emerging technologies.
Eniola et al. [15] (2025) explored wind-hydrogen microgrids, demonstrating how wind variability affects
sizing, although hydrogen integration raised economic concerns. George et al. [16] (2023) introduced a
modified dragonfly algorithm for optimal sizing, proving efficient results in institutional applications,
though lacking real-world validation. Earlier, Tiwari and Dubey [17] (2015) proposed a methodology for
hybrid sizing but relied on simplified assumptions without advanced optimization. More recently, Giiven et
al. [18] (2023) combined hybrid metaheuristic algorithms for multi-objective optimization, showing strong
potential in cost-emission-reliability trade-offs but at the expense of high computational demands. Vafaeva
et al. [19] (2024) applied PSO for solar—wind microgrid sizing, producing effective results, though omitting
storage integration.Emerging artificial intelligence methods have also influenced HRES research. Abid et
al. [20] (2022) proposed the artificial hummingbird algorithm for renewable planning, addressing
uncertainty but showing limited focus on hybrid system integration. Finally, Lodin et al. [21] presented a
MATLAB/Simulink-based modeling framework for solar—wind hybrid systems, demonstrating practical
feasibility but without optimization or control mechanisms. Collectively, these studies indicate significant
progress in HRES optimization, modeling, and control, but persistent challenges remain in scalability, real-
time applicability, computational complexity, and integration with advanced energy storage and grid-
interfacing technologies.

The studies in hybrid renewable energy system design emphasize metaheuristic optimization, modeling,
and multi-criteria decision-making to improve system performance and reliability. Kouihi et al. [22]
demonstrate a GA-driven framework for PV/wind hybrid systems, balancing energy reliability, cost, and
sizing constraints while noting GA’s sensitivity to parameters. Paliwal [23] applies a Butterfly-PSO
approach for reliability-focused wind-battery sizing, highlighting robust global search but increased
computational demand. Lodin et al. [24] provide MATLAB/Simulink simulations that clarify component
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interactions, though their deterministic approach limits engagement with stochastic variability. Minakshi
and Kumar [25] integrate optimal sizing with geographic placement to enhance economic and operational
efficiency, albeit with higher computational complexity. Lazaar et al. [26] extend GA optimization to PV—
battery—hydrogen systems, addressing storage trade-offs and techno-economic uncertainties. Finally, Alavi
et al. [27] combine MCDM with heuristics for site selection and sizing of off-grid wind—hydrogen systems,
demonstrating improved decision support while highlighting sensitivity to stakeholder weighting and input
data quality. Collectively, these works illustrate the evolving strategies for optimizing hybrid renewable
systems under multi-dimensional technical, economic, and reliability considerations.Summary of hybrid
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solar wind energy systems modeling and optimal sizingis presented in the Table 2 along with limitations.

Table 2 Summary of hybrid solar wind energy systems modeling and optimalsizing

Authors & Year Methodology Performance Metrics | Limitations
Baietal. [1] (2024) | Multi-time scale optimization | Energy stability, | High  computational
under renewable resource | uncertainty modelling | complexity; lacks real-
uncertainty time validation

Alam et al Design and simulation of | Power generation | Simplified

(2025) solar-wind hybrid system analysis, load matching | assumptions; lacks
optimization
framework

Thirunavukkarasu | Review  of  optimization | Survey-based No experimental

et al. [3] (2023) techniques (PSO, GA, etc.) comparison validation; general
findings only

Papazoglou Comparison of GA vs PSO for | Convergence rate, | Focus only on OPF,

&Biskas [4] (2023) | optimal power flow solution quality not hybrid RES

Narwat& Gupta [5] | Hybrid system with combined | Reliability, energy | Limited  scalability;

(2022) batteries storage efficiency case-specific

Ammari et al. [6] | Review of sizing, optimization | Cost, efficiency, | Broad review; lacks

(2022) & energy management reliability implementation

Peng et Simulation of PV impact on | Interaction effects on | No optimization;

(2025) wind turbine performance efficiency simulation-only

Sabri et Nonlinear back-stepping | Efficiency,  stability | High control

(2024) control for hybrid systems improvement complexity; needs real-

time validation

Ahmed et al. [9]

Regression + ML models for

Accuracy (R%, RMSE)

Limited to solar PV,

(2024) solar PV prediction not integrated hybrid

Monika et al. [10] | Study  of  measurement | Accuracy, system | Small-scale study;

(2024) accuracy & stability stability lacks optimization

Ben Jemaa et al. | Fuzzy PSO for optimum | Cost minimization, | Early study; lacks

[11](2014) sizing reliability modern validation

Shah et al Multi-objective  optimization | Reliability, cost, | Region-specific;

(2021) for Arctic hybrid system storage performance limited scalability

Staden et al. [13] | Off-grid PV-wind-battery | Energy  availability, | Focused on off-grid

(2022) design reliability only

Chauhan PSO-based sizing of | Cost, performance | Computational burden;

Dwivedi PV/wind/biomass hybrid trade-off older algorithm

(2017)

Eniola et al. [15] | Impact of wind speed | Reliability, optimal | Hydrogen integration

(2025) variability on hybrid wind- | sizing adds cost; uncertain

hydrogen microgrid economics

George et al. [16] | Modified dragonfly algorithm | Cost, energy balance, | Needs real-time

(2023) for sizing efficiency deployment validation

Tiwari & Dubey | Methodology for optimal | Energy adequacy Simplified

[17] (2015) sizing of wind-solar systems methodology,  lacks
advanced optimization

Giiven et al. [18] | Hybrid metaheuristic multi- | Cost, emissions, | Computationally

Volume 25, Issue 10, 2025

PAGE NO: 78



Technische Sicherheit

(2023) objective optimization reliability intensive

Vafaeva et al. [19] | PSO for microgrid sizing Optimal sizing, | Lacks inclusion of

(2024) performance storage systems

Abid et al. [20] | Artificial hummingbird | Reliability, planning | Algorithm novelty but

(2022) algorithm  for  renewable | under uncertainty limited hybrid focus
planning

Lodinetal. [21] MATLAB/Simulink Simulation outputs, | No optimization, only
modelling of hybrid system feasibility basic simulation

3 Problems Identifications for Research

Based on the highlight a pressing need for more integrated, scalable, and experimentally validated research
in the domain of hybrid solar—wind energy systems. While existing studies offer valuable insights into
optimization techniques, simulation frameworks, and performance metrics, they often fall short in
addressing real-world applicability. Many methodologies rely on simplified assumptions, lack dynamic
optimization, or are constrained by computational complexity, making them impractical for deployment in
diverse geographic and climatic conditions. Furthermore, several approaches focus narrowly on either solar
or wind components, neglecting the synergistic behavior and control challenges inherent in hybrid
configurations. The absence of real-time validation, limited scalability, and region-specific case studies
further restrict the generalizability of findings. Additionally, the integration of advanced algorithmssuch as
fuzzy logic, machine learning, and metaheuristicsremains underutilized in practical hybrid system design,
often lacking robust experimental support.

Existing design methodologies often lack dynamic optimization and fail to account for real-time
variability in renewable resources. Most approaches rely on static assumptions or generalized models,
limiting their effectiveness in capturing the fluctuating nature of solar irradiance and wind speed. The
proposed MATLAB-based framework addresses this gap by integrating Grid Search optimization over a
24-hour simulation period, enabling precise tuning of key parameters such as PV panel count and wind
speed scaling. However, the challenge remains in systematically identifying optimal configurations that
balance reliability, efficiency, and adaptability under diverse operating conditions. This research problem
centers on developing a robust, data-driven strategy that couples system modeling with machine learning—
based optimization to enhance the performance and flexibility of hybrid renewable energy systems.These
gaps underscore the need for a comprehensive research framework that combines multi-objective
optimization, real-time simulation, and adaptive control strategies to enhance the reliability, efficiency, and
economic viability of hybrid renewable energy systems under uncertain and variable operating conditions.

4. Proposed Hybrid Solar-Wind Power System
The proposed methodology is to validate the impact of wind speed and design the optimization based
optimal sizing of the hybrid HSW-RES system. The proposed methodology employs a MATLAB-based
framework for the design and performance evaluation of a hybrid solar—wind energy system, integrating
optimization techniques to enhance reliability and efficiency for optimal sizing. Specifically, the research
applies a Grid Search optimization approach to identify the optimal system configuration by adjusting two
critical variables: the number of photovoltaic (PV) panels and the wind speed scaling factor. The
optimization is conducted over a 24-hour simulation period, ensuring that the dynamic variations in
renewable energy generation are accurately captured. This process not only facilitates the determination of
the most effective operating conditions but also enables the visualization of the hybrid output impact under
varying wind characteristics. By coupling system modeling with ML based optimization, the methodology
provides a systematic and data-driven strategy for improving hybrid renewable energy system design,
supporting both performance maximization and operational flexibility.
The design parameters used for the study are defined as given in the Table 3.

Table 3 Parameter of Wind Turbine system

Parameter Value Unit
Cut-in wind speed (Vcut_in) 3 m/s
Rated wind speed (Vrated) 12 m/s
Cut-out wind speed (Vcut_out) 25 m/s
Time in hours;, day 24 h
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Rated power of solar PV vamted 300 W
solaryrqdiance randomly [0, 0, 0, 0, 0, 100, 300, 500, 700, 850, 950, 1000, | W/m?
selected for a day 980, 800, 600, 400, 200, 50, 0, 0, 0, 0, 0, 0
Air density (pgir) rho_air=1.225 kg/m”3
Rated power of Wind system Pyind,greq =2000 W
Rotor radios R R=2 m
Total battery bank capacity Coattery ., = 500 Ah
Load profile Load demand [500, 450, 400, 400, 450, 600, 800, 1000, 1200, w
load gemandayy, 1500, 1800, 2000, 2200, 2000, 1800, 1500, 1200,
1000, 800, 700, 600, 550, 500, 5001];

Block diagram inFigure 3 illustrates the proposed solar—wind hybrid power system simulation framework,
which integrates renewable energy sources to ensure a reliable and stable power supply. The system
combines power from a wind generator and PV panels, both of which are equipped with rectifiers to
convert variable AC or DC outputs into a stable DC link. This combined DC power is then processed by an
inverter, which converts the energy into AC form suitable for grid or load applications. To ensure voltage
regulation and compatibility with grid standards, the inverter output is further conditioned through a
transformer, providing the appropriate voltage level for end-use. It can be observed from the Figure 3 that
final system integrate solar PV and Wind system using rectifier circuit and pass it to inverter for power
storage and transformer coupling is used for grid integrations.
Solar-Wind Hybrid Power System Simulation

D X, Mer output

Transformer X, Mer input

Power
PV

_L Inverter

Figure 3 block diagram of the hybrid solar wind system architecture

The system architecture as in Figure 3 highlights the complementary nature of solar and wind energy,
where fluctuations in one source can be compensated by the other, thereby improving overall reliability and
efficiency. Additionally, the use of power electronic converters, including rectifiers, inverters, and
transformers, ensures efficient energy conversion and quality assurance of the supplied power. This
proposed hybrid configuration forms the basis for subsequent simulation, optimization, and performance
evaluation.

The Figure 4 have presented the Matlab Simulink representation of the Wind energy system as validated
and tested for wind speed and torque performance. Similarly, model for solar PV system as validated is
given in the

Solar - Wind Hybrid Power System Simulation

XMt ingast

- % Mwnd

il
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a) hybrid Simulink model validated
Figure 4 Schematic-model of the basic Solar-wind hybrid energy system as validated
4.2 Mathematical modeling of proposed HSW-RES system
Section presented the mathematical mudsling for the proposed hybris system simulation.
1. Solar PV Power Generation
The solar PV output power at hour i is:

. G
By (i) = Npy - By, rated G—l 3)

pv std
where Ny, = number of PV modules
Various design parameters are used for the investigation in this work. G (i) is solar irradiance at i**hourl#’ /
m2. Ggqis standard irradiance =1000W /m?.
with a non-negativity constraint:
Py (1)= max (o, va(i)) “)
2. Wind Power Generation
For each hour 7, the wind turbine power is divided in to three regions:

0 for V(i) < Ve, 07 V(@) > Veye oy
Pwind(i) = Nwind '%pACpV(i)S fOT' chtin = V(i) < Vrated (5)
Nyina * Pwindrated' fOT V(i) Z Viatea

Power is also bounded by
Pwind(i) < Nyina * Pwinarratea (6)
3. Total Renewable Power
Ben(@) = va(i) + Pyina (D)
4. Load Demand & Net Energy Balance
Effective load demand considering inverter efficiency:

. Pioqd (i)
Eioqa (D) = l:,;j—:vl (7
The net energy balance per hour is calculated as:
Enet (D) = Pren () — Ejpaa (D) )]

5. Battery State of Charge (SOC) Dynamics
Initial conditions are;
S0C(0) = SOCiitiar » SOCpin =1 —DODmax )
Excess Energy (Charging) is defined as
If Enet(i) =0
SOC(i) = SOC(i — 1) + Chat - Ep, (i) - 2t (10)

Vbus

If SOC > 1:S0C (V) = 1, Ecyrtaitea (i) = Enee (D) — ((SOC(E) — 1) « Cpar - Vpus)  (11)

Various design parameters are used for the investigation in this work.

4.3 Design and Simulation Parameters

aimed to define key concepts and definitions related to the Wind Turbine Power Curve and Inverter FFT
Analysis:

4.3.1 Wind Turbine Parameters

Rated Power(P,.,,,): The maximum power output a single wind turbine is designed to produce. The value
is set to 2000 Watts (W).

Cut-in Wind Speed (V,;,,): The minimum wind speed at which the turbine starts to generate power. The
value is 3 m/s.

Rated Wind Speed (V,4:0q): The wind speed at which the turbine reaches its rated (maximum)
power output. The value is 12 m/s.

Cut-out Wind Speed(V,y;,,.): The maximum wind speed at which the turbine is shut down to prevent
damage. The value is 25 m/s.

Air Density(p,;,-): The mass of air per unit volume. The script uses a standard value of 1.225 kg/m?.

Rotor Radius(R,,:-) : The radius of the turbine's rotor blades. The value is 2 meters (m).

Power Coefficient(C,): A measure of the wind turbine's efficiency in converting the kinetic energy of the
wind into electrical power. The script uses a value of 0.4.
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Swept Area(Agyepc): is the total area covered by the rotor blades as they spin depends on radius of rotor
R,

4.3.2 Power Curve Regions

Region 1 & 4: These regions correspond to wind speeds below the cut-in speed (V < Vi, ) or it is above
the (V > Vi, . Jeut-out speed. Under these regions, the power output is zero.

Region 2:This is the aerodynamic power generation region, where wind speed is between the cut-in and
rated speeds(Vys;,, < V < Vigrea)- the power P is calculated using equation (1).

Region 3: In this region, the wind speed is(V,.qreq <V <V, ) is between the rated and cut-out speeds
Under the region 3 turbine produces its constant rated power.

ut out

4.3.3 Inverter Performance Analysis Concepts
In order to investigate the inverter performance, the THD is evaluated for the solar PV system final output
before grid for HSW-RES system. The impact of variable wind speed is investigated for THD evaluation.
Fast Fourier Transform (FFT): A mathematical algorithm used to analyze the frequency components of a
signal. The FFT analysis is proposed to usein order to find the frequency spectrum of an inverter's output
current for THD analysis. This method quantifies the presence of harmonics relative to the fundamental
frequency in a signal, providing a measure of signal distortion.
Total Harmonic Distortion (THD): A measurement of the harmonic distortion present in a signal, defined
as the ratio of the sum of the powers of all harmonic components to the power of the fundamental
frequency. It is a key metric for evaluating inverter performance.
2
THD = [(2200) . 100% (12)
Vi

Where:

V= RMS voltage of harmonic components (h =2, 3,4, ...)

Vi = RMS voltage of the fundamental frequency component

Steps to calculate THD using FFT are;

1. Perform FFT on the signal to obtain frequency components

2. Identify the fundamental frequency component

3. Calculate RMS values for fundamental and harmonic components
4. Apply the THD formula using the RMS values

5. Express the THD result as a percentage % if required.

Fundamental Frequency: (Frangametq) iS defined as the primary operating frequency of the AC signal.
The work uses a value of 50 and 60 Hz.

Harmonics: Unwanted, higher-frequency components in the AC signal that are integer multiples of the
fundamental frequency. The research introduces 3rd, 5th, and 7th harmonics into its synthetic signal to
simulate non-ideal inverter behavior.

5. Expected Results
This section has presented the results of series of experiments performed for performance assesssetb f
HSW-RES system. The waveform of the current simulationfor the inverter analysis is given in the Figure 5.

10 Inverter Output Current (Synthetic, with Harmonics)
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Figure 5 Simulated current waveform for the of the various HSWES waveforms
Figure 5 shows the current waveform (I) of an electrical system plotted against time (s) over a duration of
0.1 seconds. The waveform is sinusoidal in nature, oscillating between approximately +9 A and -9 A,
indicating an alternating current (AC) signal. The periodicity suggests a frequency of around 50 Hz, which
is typical of grid-based or inverter-generated AC signals. The waveform is smooth and symmetric about the
horizontal axis, reflecting a stable and distortion-free sinusoidal current.

5.1 Results of SOC and Excess Energy
Figure 6 illustrates the comparative performance of three optimization approaches—Grid Search, PSO, and
GA optimizations in terms of total excess energy (Wh) and final battery State-of-Charge (SOC).

Total Excess (Wh) Final Battery State-of.Charge
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a) total excess energy results b) the final SOC of battery

Figure6Simulated results of excess and the battery charging for HSWES model
It is clear from Figure 6(a) that the total excess energy generated by the system varies across the three
optimization approaches. The Grid Search method produces the highest excess energy, slightly above
12,000 Wh, whereas both PSO and GA result in lower excess values, around 11,000 Wh. This suggests that
the deterministic Grid Search method explores all possible parameter combinations exhaustively, which
may lead to solutions that maximize generation potential, even at the cost of increased surplus energy.
On the other hand, PSO and GA, being metaheuristic methods, search for near-optimal solutions through
iterative exploration and exploitation, which often balance between generation, storage, and demand. Their
slightly reduced excess energy indicates a more efficient matching of energy generation with consumption
and storage capacity, reducing unnecessary surplus. This could imply better system utilization and reduced
curtailment losses, making PSO and GA more practical in scenarios where minimizing unused energy is
prioritized. Therefore, while Grid Search ensures maximum generation, it may lead to over-sizing or over-
production, which could increase system costs and waste. In contrast, PSO and GA demonstrate an ability
to achieve nearly the same performance with a more balanced energy profile, highlighting their potential
for cost-effective and sustainable system operation.
As shown in Figure 6(b), the final battery State of Charge (SOC) values remain almost identical across all
three optimization approaches—Grid Search, PSO, and GA—with each reaching approximately 0.98. This
high and consistent SOC level indicates that the system configuration, regardless of the optimization
strategy employed, is capable of maintaining sufficient energy storage and ensuring battery availability for
demand coverage.The similarity in SOC values demonstrates that the choice of optimization method does
not significantly impact the final charging status of the battery, implying robustness and reliability in
storage utilization across different strategies. This is an encouraging result, as it suggests that even when
the optimization process focuses on reducing energy surplus (as seen with PSO and GA), the battery is still
effectively charged to near-maximum capacity.From a system operation perspective, maintaining a SOC
close to 1 (or 100%) ensures that the energy storage system operates with a high degree of resilience and
backup reliability, minimizing the risk of power shortages during fluctuations in renewable generation or
demand pes.

12000

Energy (Wh)

5.2 Impacts of Wind Speed Profiles
This section varies the wind speed basewmdspeed= [5,6,7,8,9,10,9,8,7,6,5,4,4,5,6,7,8,9, 10, 11,
12, 10, 8, 6] selected on average random wind speeds across the day, and power curves are evaluated.
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A. Wind Power curves
The impact of the wind speed on wind system rated power curves are evaluated. Figure 7 illustrates the
power curve of a wind turbine as a function of wind speed.

6 Wind Turbine Power Curve (Ideal)
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Figure 7 Performance investigation of Wind turbine Power curves

The curve begins at the cut-in speed (around 4 m/s), where the turbine starts generating power. As wind
speed increases beyond this threshold, the power output rises sharply in a nonlinear manner, reaching the
rated power of approximately 2 kW at around 12 m/s. Beyond 12 m/s point, the output remains constant at
the rated capacity, despite further increases in wind speed, highlighting the turbine’s control mechanisms
that prevent overloading. When the wind speed reaches the cut-out speed (around 25 m/s), the turbine
automatically shuts down to protect its structural integrity, causing the power output to drop abruptly to
zero. This characteristic curve effectively demonstrates the operational range of the turbine, including its
efficient working region between cut-in and cut-out speeds, while also reflecting the limitations imposed by
safety and design considerations.

B. Wind speed and Optimal sizing: As major contribution researchproposed ML model to predict the
results of impacts of wind speed and optimal sizing of ML based HSW-RES system. The Solar PV system
wind profile is varied and base case and optimal case of wind speed are compared. as another plot the
impact of wind speed are compared for the total hybrid system response as shown in the Figure 8. Four
different wind load profiles are compared in the Figure for optimal performance.

Hybrid System Optimization and Wind Resource Impact Analysis
ML-Predicted Optimal Wind Speed Profile

tmpact of Wind Charactaristic on Total Hybrid Ronswshls Fowes

ot 8¢ Fiaraaibie

Hiosr of Dy

Figure 8Results of Impacts of Wind speed and Optimal sizing of ML based HSW-RES system

The Figure8 a) (upper Figure) presents a comparative analysis of wind speed profiles over a 24-hour
period, highlighting the difference between a linear wind speed model and an optimized wind profile. The
linear wind speed (1-D), shown as a black dashed line, exhibits a steady increase during daylight hours,
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peaking around hour 18 before tapering off. In contrast, the optimal wind profile (2-D), represented by a
solid blue line, follows a similar trend but consistently maintains slightly lower wind speeds throughout the
day. This refined profile reflects the impact of wind speed scaling in optimization, suggesting a more
realistic and performance-aligned representation of wind behavior. The reduced wind speed in the
optimized profile likely contributes to improved system reliability and efficiency by minimizing excess
generation and aligning better with load demands.Figure 8 b) (as in lower Figure) has presented the impact
of wind characteristics on total hybrid renewable power. Figure illustrates how varying wind conditions
influence the total power output of HSW-RES system over a 24-hour period. Four profiles are plotted for
the Low Wind (5 m/s), Raw Wind (7 m/s), Idealized Renewable Load (IRL)optimal, and load demand.
Numerically, the low wind (5 m/s) profile (red line) consistently underperforms, with peak power output
reaching only around 40 kWh, resulting in frequent shortfalls below the load demand curve. The raw wind
(7 m/s) profile improves generation, peaking near 55 kWh, but still shows mismatches during early and late
hours. In contrast, the IRL optimal profile closely tracks the load demand curve, especially between hours 8
to 20, with peak output approaching 65-70 kWh, indicating superior alignment and reduced excess or
deficit.

Comparatively, Figure 8(b) demonstrates that the IRL Optimal configuration achieves the best balance
between generation and demand, minimizing both energy shortfall and surplus. This suggests that
optimized wind scaling not only enhances system responsiveness but also improves overall efficiency and
reliability. The numerical advantage of the IRL Optimal profileyielding up to 25-30% higher peak output
than the low wind casevalidates the effectiveness of the optimization strategy in hybrid system design.

5.3 Optimization Methods Results for Optimal Sizing

In this proposed research performance of the three optimization methods such as Genetic Algorithm (GA),
PSO, and Grid Search methods are compared for the optimizing the hybrid system sizing. The primary goal
is to find the optimal number of solar panels (PV) and a wind speed scaling factor to best meet a given
hourly load demand while managing battery state of charge.These models are sequentially represented as
follows:

a) Genetic algorithm (GA): the Genetic Algorithm (GA) is implemented to find the optimal number of
PV panels (N, ) and a wind speed scale factor (w;) for aHSW-RES system. Its implementation begins
by defining an objective function, obj,,, which wraps a simulation function and a scoring function.
This functionobjy, is designed to be minimized by the GA solver, so it returns the negative of a
performance score.

The GA process begins by defining the initial parameters like;

Initial population size: The number of individuals in the population for each generation is set to 40.

Crossover and mutation rates: Probabilities that control how new solutions are generated from existing

ones.

Termination criteria: The condition that determines when the algorithm stops, such as a maximum number

of generations (iterations). Termination criterion for the Genetic Algorithm (GA) as the maximum number

of generations. The GA will stop after it has run for 80 generations or (iterations).

The search space is constrained with lower bounds of [5, 0.5] and upper bounds of [50, 2.0] for the number

of PV panels and the wind scale factor, respectively.

The Flow chart of the GA based optimal sizing is illustrated in the Figure 9 a). The process is
probabilistic in nature and outcomes depends on population size and iteration counts.
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Figure 9 flow chart of GA and PSO based optimization for optimal sizing

b) Particle Swarm Optimization (PSO)

A metaheuristic PSO optimization algorithm explores the solution space to find the optimal combination of
PV panels and wind scale. the Flow chart of PSO based optimization is illustrated in the Figure 9 b). The
optimization is configured with specific options: a swarm size of 40 particles and a maximum of 120
iterations. the objective function objpg, is called and minimized for optimal sizing performance. The
search space is defined by samelower and upper bounds as used for GA as lower bounds=[5, 0.5] and upper
bounds= [50, 2.0] for the two variables.the optimization solver is iteratively executed and after the solver
finds the optimal solution vector Xy, , the first value is rounded to get an integer for (N, ), and the second
value is used as the wind scale. These optimal values are then used in a final simulation to calculate and
store the resulting deficit, excess, and final State of Charge (SOC).

¢ Grid Search Optimization:

A brute-force method that exhaustively checks a predefined discrete range of values for the number of PV
panels (N,,) and the wind speed scale factor (ws). It iterates through every possible combination to find the
one that yields the best performance score. The model flow chart is given in Figure 10as;
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Figure 10 Flow chart of the proposed Grid Search method for the HSW-RES system
Figure 10 illustrates the flowchart representing the grid search algorithm, a systematic approach widely
used for hyperparameter tuning in machine learning models. The procedure begins with the initialization of
a predefined parameter grid, alongside the assignment of baseline values for performance tracking, where
the best score is initially set to negative infinity and the best parameter configuration to None. The
algorithm then explores each parameter combination within the grid through an iterative process. In every
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iteration, the model is trained and evaluated; whenever the obtained score surpasses the previously recorded
best score, both the score and the associated parameter set are updated accordingly. This process continues
exhaustively until all possible combinations have been assessed. The flowchart highlights the deterministic
and exhaustive nature of grid search, underscoring its ability to guarantee the identification of the optimal
parameter configuration within the specified search space. Despite its computational intensity, grid search
remains a fundamental technique in model optimization and selection, contributing significantly to
performance improvement in ML solution in Hybrid power system design applications.

5.3.1 Results of various Optimization Methods

The results are expected to evaluate the performance by keeping the different wind speed under
consideration for wind torque variation and the impact on the HSW-RES system is investigated. It is also
proposed to apply ML based optimization methods for achieving higher sizing and power output.

Table 4: Grid Search Optimization Results Summary

Parameter Value
Search Space 10 x 16 combinations
BestN,,, 10
Best Wind Scale 0.90
Best Score 18.0168

Table 4 summarizes the outcomes of the grid search optimization process. The algorithm explored a search
space consisting of 160 parameter combinations (10 x 16), ensuring a comprehensive evaluation of possible
configurations. From this exploration, the optimal values were identified as Ny, = 10 and a wind scale
factor of 0.90, which together yielded the highest performance score of 18.0168. These results highlight the
effectiveness of the grid search method in systematically identifying the most suitable parameter set,
demonstrating its reliability in optimizing hybrid renewable system configurations.

Table 5 presents the summary of Particle Swarm Optimization (PSO) performance across successive
iterations. The results show a steady improvement in the objective function, with the best fitness value
converging to f{x) = —18.10. Initially, the mean fitness values were relatively high, but as the iterations
progressed, the swarm exhibited significant convergence, reflected in reduced mean values and minimal
stall iterations toward the final stages. The optimization process identified the optimal system configuration
at Ny, =7 and a wind scale factor of 0.881, yielding the best score of 18.1021. These outcomes
demonstrate the efficiency of PSO in navigating the search space and achieving rapid convergence toward
the global optimum. Compared to exhaustive methods such as grid search, PSO offers a more
computationally efficient approach while still ensuring robust parameter selection and performance
enhancement.

Table 5: PSO Optimization Results Summary

Iteration Function Count | Best f(x) | Mean f(x) | Stall Iterations

0 40 -17.79 297.1 0

5 240 -18.05 934.4 0

10 440 -18.08 792.9 2

20 840 -18.10 15.49 3

30 1240 -18.10 -17.42 1

36 1480 -18.10 -17.95 0
Best Result -18.10 —
Best Npv 7 —
Best Wind Scale 0.881 —
Best Score 18.1021 —

Table 6 present optimization performance of GA across multiple generations. The algorithm demonstrates a
progressive improvement in fitness values, with the best obj;, function converging to f(x) = —18.10.
Table 6: GA Optimization Results Summary

Generation Function Count | Best f(x) Mean f(x) Stall Generations
1 80 -17.87 351 0
7 308 -18.09 -17.89 0
20 302 -18.10 -18.05 0
40 1562 -18.10 -18.10 10
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60 2322 -18.10 -18.08 3

63 2436 -18.10 -18.08 6

Best Result — -18.10 — —
Best Npv 7 — —
Best Wind Scale 0.88101 — —
Best Score — 18.1021 — —

Early generations exhibited higher mean fitness values, but as evolution progressed, the population
converged toward stability, with both best and mean values consistently aligning by generation 20. While
occasional stall generations were observed, the algorithm-maintained convergence efficiency, ultimately
reaching the global optimum without significant divergence. The optimal configuration was achieved at
Ny, = 7 and a wind scale factor of 0.88101, yielding the best score of 18.1021. These results confirm the
effectiveness of GA in achieving robust convergence and optimal system design. Compared to
deterministic approaches such as grid search, GA provides flexibility in exploring the solution space, while
its convergence characteristics closely parallel those of PSO, reinforcing its suitability for renewable
energy system optimization.
Performance score calculation is based on a performance metric that considers multiple factors. It is
designed to be maximized, so a higher score indicates better system performance. The score isathletically
calculated as:
score = (currentﬁnalsoc —S0Cpin) * EbatterykWh —currentgericie — (CUrTeNtoycess /1000) * 0.1 (13)
The components of the score are:
1. Battery State of Charge (SOC) term: (currentﬁnalsoc —SO0Cphin) * Ebafterykwn' This rewards
higher final SOC values, encouraging better battery utilization.
2. Energy deficit penalty: - currentgeyic, This penalizes any energy shortfall, encouraging the
system to meet demand. No deficit is considered for simulation.
3. Excess energy penalty: - (current,,c.ss/1000)*0.1; This slightly penalizes excess energy
production, encouraging efficient resource use.
The score must be high to indicate better performance. A higher score suggests:
=  Higher final battery state of charge
=  Lower energy deficit (better meeting of demand)
=  Lower excess energy (more efficient use of resources)

Table 7: Comparative optimization methods Optimal Results

Method N,, | Wind Scale | Total Deficit (Wh) | Total Excess (Wh) | Final SOC Score
Grid Search 10 0.90 0 11,832 1 18.017
PSO 7 0.881 0 10,979 1 18.102
GA 7 0.88101 0 10,979 1 18.102

Table 7 provides a comparative overview of the optimal results obtained through Grid Search, PSO, and
GA. All three methods successfully eliminated energy deficit (Totalpeficiy = 0 Wh) and maintained the
battery’s final state of charge at a fully sustained level (SOC = I). However, variations are observed in
excess energy and optimization scores. Grid Search produced the highest excess energy output (/7,832
Wh), slightly higher than the /0,979 Wh obtained by PSO and GA. Despite this, PSO and GA achieved
marginally higher optimization scores (/8./02) compared to Grid Search (18.017), attributed to their finer
exploration of the search space.While PSO and GA demonstrate superior convergence efficiency with
fewer PV units (N, = 7) compared to Grid Search (N, = 10), the effectiveness of Grid Search lies in its
deterministic and exhaustive evaluation of all possible parameter combinations. Unlike heuristic
approaches, Grid Search guarantees identification of the optimal solution within the defined search space,
ensuring robustness and reproducibility. This makes Grid Search particularly valuable for smaller or
moderate search spaces (as in microgrid) where computational cost is manageable, offering a reliable
baseline against which the performance of heuristic methods can be validated.
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Figure 11Impact of Wind speed on solar-wind hybrid system for ML models performance investigation
The impact of wind speed optimization on hybrid system output is illustrated in Figure 11, using three
different optimization methods as Grid Search, PSO, and GA. Performance is compared against the
system’s load demand profile. The results reveal distinct variations in renewable power generation
depending on the optimization strategy. Grid Search (with N, =10, scale factor sf = 0.90) achieves
consistently higher power output throughout the day, particularly during peak solar and wind resource
hours (around 6-8 hours and 18-20 hours), where its generation exceeds 4 kW. In contrast, both PSO and
GA (withNp,, =7, sf=0.58)show lower production levels, with noticeable underperformance during midday
hours (10-15 hours) when output falls closer to the load demand curve. Despite these differences, all three
methods successfully maintain renewable generation above demand during peak periods, ensuring supply
reliability. Overall, the figure demonstrates that while heuristic methods (PSO and GA) converge to similar
solutions with reduced PV capacity, Grid Search provides superior overall energy output, highlighting its
effectiveness in maximizing renewable power availability across the daily cycle.

Table 8 Performance comparison of the all three Optimization Methods

Method N,y | Wind Scale | Totalpefici(Wh) | Totalg,..s(Wh) | Final SOC | Score

Grid Search | 10 0.9 0 46,319 1 14.568
PSO 0.5 7,075.3 1,863.6 0.44233 | -7,069.6
GA 5 0.5 7,075.3 1,863.6 0.44233 | -7,069.6

Table 8 presents a comparative analysis of the three optimization methods, Grid Search, PSO, and
GAapplied to the hybrid energy system. The results indicate that Grid Search outperforms both heuristic
methods in all evaluated metrics. Specifically, it achieves a total deficit of 0 Wh, ensuring that the energy
demand is fully met, and delivers the highest total excess energy of 46,319 Wh, reflecting superior energy
generation and utilization. Additionally, the final state of charge of the battery reaches its maximum value
(SOC = 1), highlighting effective energy storage management. The overall optimization score of 14.568
further confirms its superior performance. In contrast, both PSO and GA exhibit significant energy deficits
(7,075.3 Wh), much lower excess energy (1,863.6 Wh), and incomplete battery charging (SOC = 0.44233),
leading to substantially negative scores (-7,069.6). These findings demonstrate that while heuristic
algorithms like PSO and GA can offer computational efficiency, the deterministic and exhaustive
evaluation of Grid Search ensures optimal system performance, particularly when the search space is
manageable.

5.4 THD of Inverter Evaluation

The output current is evaluated under synthetically generated distortion for THD analysis. The resulting
FFT plot is configured to focus on the low-order frequency range (0-500 Hz), which is most relevant for
power quality analysis. This targeted visualization helps in easily identifying the magnitudes of the
fundamental frequency and the unwanted harmonic components.Table 9 presents the evaluated
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performance of the inverter current in terms of harmonic distortion analysis. The fundamental operating

frequency is observed at 60 Hz, with a corresponding fundamental RMS current of 7.07 A, indicating stable

current delivery at the base frequency. The calculated % THD is 0.3%, which is well within the acceptable
limits for power quality standards (typically below 5%). This ensuring efficient operation, reduced losses,

and reliable performance of the hybrid energy system. The respective bar plots are presented in Figure 12.
Table 9 the performance of evaluated THD

Parameter Value

Fundamental Frequency 60.0 Hz
Fundamental RMS Current (Conceptual) 7.07 A
Calculated Total Harmonic Distortion (THD) | 0.3 %
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Figure 12 Performance evaluation of the THD of the Inverted current

5.5 ML based methods prediction Results for Solar Power

This section the additional experiment is performed to compare the performance of various ML regression-
based prediction models for solar PV power output profile. The daily variation in solar power generation is
presented in Figure 13 comparing actual measured values with predictions from five regression models:
Linear, Support Vector Regression (SVR), Decision Tree, Ensemble, and Neural Network (NN). The
measured curve (blue line) shows a clear diurnal pattern, with output beginning to rise around 8:00 AM,
reaching its maximum between 12:00 PM and 2:00 PM, and gradually declining to nearly zero in the
evening. Among the predictive approaches, the NN model provides the closest agreement with the

measured data, particularly during peak hours, successfully replicating both the magnitude and curvature of
the solar output.
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Figure 13 Performance of ML prediction methods for nonlinear solar data

The Linear regression substantially underestimates the peak and fails to capture the inherent non-linear
dynamics, leading to notable discrepancies during midday. The SVR model achieves moderate
improvement over the Linear model but continues to lag in accurately reproducing the peak region. The
Decision Tree model approximates the overall shape but introduces abrupt fluctuations, likely attributable
to overfitting or limited smoothness in its predictions. In contrast, the Ensemble model provides a more
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balanced representation, with improved smoothness and peak estimation, yet still does not match the
fidelity of the NN based model.It can be observed the NN offered the maximum of 247 W power output.
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Figure 14 results for the NN modeltraining

6. Conclusion and Future Work

The study demonstrates that hybrid solar—wind systems effectively enhance energy reliability and stability,
with Grid Search optimization using ten PV panels identified as the optimal sizing solution, ensuring
efficient performance while maintaining inverter power quality and accommodating wind speed variability.
sequence of experiments including impact of wind seeped on wind power corves, optimal sizing based on
ML optimization methods and also the inverted current THD analysis are carried out. Following main
conclusions are drawn from the studies.

o This study systematically evaluated the performance of three optimization techniquesGrid Search,
PSO, and GAfor the design and operation of proposed HSW-RES system design.

e The Grid Search method yielded the highest level of excess energy generation, whereas PSO and
GA produced lower excess energy but demonstrated superior resource utilization efficiency.

o It is concluded that optimization method has no impact on battery charging and despite
methodological differences, the final battery State of Charge (SOC) remained nearly identical across
all approaches, stabilizing around 0.98, which reflects reliable storage management.

e The influence of wind speed on turbine power curves and its role in the optimal sizing of HSW-RES
was analysed, highlighting its critical impact on system performance.

e Machine learning (ML) techniques were employed to predict the effects of wind speed variations
and to assist in the optimal sizing process of the hybrid system.

e The inverter’s current quality was assessed, showing a very low total harmonic distortion (THD) of
0.3%, thereby confirming compliance with power quality standards and efficient system operation.

e Comparative analysis of ML regression models for solar PV power prediction revealed that the
Neural Network (NN) achieved the closest correspondence with 247 W measured values,
outperforming other models in accuracy.

6.1 Future Work

In future incorporating other renewable energy sources, such as biomass or small-scale hydro, could further
enhance system reliability and energy efficiency. Developing real-time or adaptive optimization algorithms
that respond dynamically to changing weather and load conditions could improve system performance
beyond static optimization methods is scope of future too.Another scope is to investigating the interaction
of HSW-RES with the main grid, including smart control, demand response, and energy storage
management, can optimize energy delivery and stability.

References
[1]. Mingqi Bai, Shuqi Liu, Meng Qi, Shangzhi Liu, Chi-Min Shu, Wei Feng, Yi Liu, Optimization of
wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of
renewable resources, Energy, Volume 313, 2024, 133790,
https://doi.org/10.1016/j.energy.2024.133790.

Volume 25, Issue 10, 2025 PAGE NO: 91



Technische Sicherheit

[2].

[3].

[4].

[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

ISSN NO: 1434-9728/2191-0073

Alam, Farzana & Parvez, Sofi & Haque, Md Fozlul & Hasan, Md & Haque, Syed & Uddin, Mohin
& Khatun, Joly. (2025). Design and Analysis of a Solar-Wind Hybrid Energy Generation System.
American Journal of Energy and Natural Resources. 4. 9-13. 10.54536/ajenr.v411.3684.

M. Thirunavukkarasu, Yashwant Sawle, Himadri Lala, A comprehensive review on optimization of
hybrid renewable energy systems using various optimization techniques, Renewable and Sustainable
Energy Reviews, Volume 176, 2023, 113192, https://doi.org/10.1016/j.rser.2023.113192. .
Papazoglou, G.; Biskas, P. Review and Comparison of Genetic Algorithm and Particle Swarm
Optimization in  the Optimal Power Flow  Problem. Energies 2023, 16, 1152.
https://doi.org/10.3390/en16031152

. K. Narwat and M. Gupta, "A Study on Combined Batteries WithA Solar / Wind Hybrid Renewable

Energy System," 2022 International Interdisciplinary Humanitarian Conference for Sustainability
(IIHC), Bengaluru, India, 2022, pp. 1308-1312, doi: 10.1109/ITHC55949.2022.10060774.

Chouaib Ammari, Djamel Belatrache, Batoul Touhami, Salim Makhloufi,Sizing, optimization,
control and energy management of hybrid renewable energy system—A review, Energy and Built
Environment, Volume 3, Issue 4, 2022, Pages 399-411,
https://doi.org/10.1016/j.enbenv.2021.04.002 .

Peng, H., Li, Z., Zhang, R., Xin, J., & Chen, R. (2025). Simulation study on the impact of
photovoltaic arrays on wind turbine performance in a wind-solar hybrid system. International
Journal of Green Energy, 22(13), 2967-2980. https://doi.org/10.1080/15435075.2025.2481190
Khadija Sabri, Ouadia El Maguiri, Abdelmajid Farchi, Optimizing power output in hybrid
photovoltaic/wind systems: a nonlinear back-stepping approach for enhanced efficiency and
stability, Clean ~ Energy, Volume 8, Issue 6, December 2024, Pages 205-
224, https://doi.org/10.1093/ce/zkae083

Sina Ibne Ahmed, Kaiser Ahmed Bhuiyan, Irin Rahman, Hossein Salehfar, Daisy Flora Selvaraj,
Reliability of regression based hybrid machine learning models for the prediction of solar
photovoltaics power generation, Energy Reports, Volume 12, 2024, Pages 5009-5023, ISS
https://doi.org/10.1016/j.egyr.2024.10.060.

D. Monika et al., "Integrating Wind and Solar Energy: A Study on Measurement Accuracy and
System Stability," 2024 7th International Seminar on Research of Information Technology and
Intelligent  Systems ~ (ISRITI), Yogyakarta, Indonesia, 2024, pp. 605-609, doi:
10.1109/ISRITI64779.2024.10963525.

A. Ben Jemaa, N. Essounbouli and A. Hamzaoui, "Optimum sizing of hybrid PV/Wind/battery
installation using a fuzzy PSO," 3rd International Symposium on Environmental Friendly Energies
and Applications (EFEA), Paris, France, 2014, pp. 1-6, doi: 10.1109/EFEA.2014.7059940.

S. K. H. Shah, A. Hellany, M. Nagrial and J. Rizk, " Multiobjective Optimization of a Hybrid
Wind/Solar BatteryEnergy System in the Arctic, Journal of Renewable Energy, Vol. 2021 , Issue 1,
8829561 https://doi.org/10.1155/2021/8829561

P. T. Staden, T. Adefarati, R. C. Bansal and R. Naidoo, "Design and Analysis of an Off-Grid
Connected PV-Wind-Battery Hybrid Energy System," 2022 IEEE IAS Global Conference on
Emerging Technologies (GlobConET), Arad, Romania, 2022, pp- 477-481,
https://doi.org/10.1109/GlobConET53749.2022.9872417

A. Chauhan and V. K. Dwivedi, "Optimal sizing of a stand-alone PV/wind/MHP/biomass based
hybrid energy system using PSO algorithm," 2017 6th International Conference on Computer
Applications In Electrical Engineering-Recent Advances (CERA), Roorkee, India, 2017, pp. 7-12,
doi: 10.1109/CERA.2017.8343292.

Victor Eniola, Jack Cimorelli, Christopher Niezrecki, David Willis, Xinfang Jin, Investigating the
impact of wind speed variability on optimal sizing of hybrid wind-hydrogen microgrids for reliable
power supply, International Journal of Hydrogen Energy, Volume 106, 2025, Pages 834-849,
https://doi.org/10.1016/j.ijhydene.2025.01.444.

D.X. Tittu George, R. Edwin Raj, Ananth Rajkumar, M. Carolin Mabel, Optimal sizing of solar-
wind based hybrid energy system using modified dragonfly algorithm for an institution, Energy
Conversion and Management, Volume 283, 2023, 116938,
https://doi.org/10.1016/j.enconman.2023.116938.

Avinash Nath Tiwari and Navnit Dubey, A Methodology of Optimal Sizing for Wind Solar Hybrid
System, Asian Review of Mechanical Engineering Vol. 4 No. 1, pp. 11-16 2015,

Volume 25, Issue 10, 2025

PAGE NO: 92



Technische Sicherheit ISSN NO: 1434-9728/2191-0073

[18]. A. F. Giiven, N. Yoriikeren, E. Tag-Eldin and M. M. Samy, "Multi-Objective Optimization of an
Islanded Green Energy System Utilizing Sophisticated Hybrid Metaheuristic Approach," in I[EEE
Access, vol. 11, pp. 103044-103068, 2023, https://doi.org/10.1109/ACCESS.2023.3296589

[19]. Vafaeva, Khristina Maksudovna& Raju, V. & Ballabh, Jayanti & Sharma, Divya &Rathour,
Abhinav &Rajoria, Yogendra. (2024). Particle Swarm Optimization for Sizing of Solar-Wind
Hybrid Microgrids. E3S Web of Conferences. 511. 01032.
https://doi.org/10.1051/e3sconf/202451101032 .

[20]. M. Shadman Abid, H. J. Apon, K. A. Morshed and A. Ahmed, "Optimal Planning of Multiple
Renewable Energy-Integrated Distribution System with Uncertainties Using Artificial Hummingbird
Algorithm," in [EEE Access, vol. 10, pp- 40716-40730, 2022,
https://doi.org/10.1109/ACCESS.2022.3167395.

[21]. Obaidullah Lodin, Nitin khajuria, Satyanand Vishwakarma, Gazia Manzoor, Modeling and
Simulation of Wind Solar Hybrid System using Matlab/Simulink, International Journal of
Innovative Technology and Exploring Engineering (IJITEE) Volume-8, Issue-9S,
July 2019

[22]. Kouihi, M., Moutchou, M., Ait EIMahjoub, A. (2024). Genetic Algorithm-Driven
Optimization for Standalone PV/Wind Hybrid Energy Systems Design. In:
Hamlich, M., Dornaika, F., Ordonez, C., Bellatreche, L., Moutachaouik, H. (eds)
Smart Applications and Data Analysis. SADASC 2024. Communications in
Computer and Information Science, vol 2168. Springer, Cham.
https://doi.org/10.1007/978-3-031-77043-2_8

[23]. Paliwal, P. (2022). Reliability-Based Optimal Sizing for an Isolated Wind—Battery
Hybrid Power System Using Butterfly PSO. In: Bansal, R.C., Agarwal, A., Jadoun,
VK. (eds) Advances in Energy Technology. Lecture Notes in Electrical
Engineering, vol 766. Springer, Singapore. https://doi.org/10.1007/978-981-16-
1476-7_16

[24]. Lodin, Obaidullah & Khajuria, Nitin & Vishwakarma, Satyanand & Manzoor,
Gazia. (2019). Modeling and Simulation of Wind Solar Hybrid System using
Matlab/Simulink. International Journal of Innovative Technology and Exploring
Engineering. 8. 218-224. 10.35940/ijitee.11034.0789S19.

[25]. Minakshi, Kumar, A. (2025). Optimal Sizing and Location of Hybrid Solar-Wind
Based DG and Minimization of Cost for Sustainable Energy. In: Lather, J.S., Singh,
A K., Sushnigdha, G. (eds) Proceedings of the International Conference on
Systems, Control and Automation. ICSCA 2023. Lecture Notes in Electrical
Engineering, vol 1260. Springer, Singapore. https://doi.org/10.1007/978-981-97-
7384-8 61

[26]. Lazaar, N., Fakhri, E., Barakat, M., Sabor, J., Gualous, H. (2021). A Genetic
Algorithm Based Optimal Sizing Strategy for PV/Battery/Hydrogen Hybrid
System. In: Masrour, T., El Hassani, 1., Cherrafi, A. (eds) Artificial Intelligence and
Industrial Applications. A2IA 2020. Lecture Notes in Networks and Systems, vol
144. Springer, Cham. https://doi.org/10.1007/978-3-030-53970-2_23

[27]. Seyed Mohammad Seyed Alavi, Akbar Maleki, Afsaneh Noroozian, Ali
Khaleghi, Simultaneous optimal site selection and sizing of a grid-independent
hybrid wind/hydrogen system using a hybrid optimization method based on
ELECTRE: A case study in Iran, International Journal of Hydrogen Energy,
Volume 55, 2024, Pages 970-983, https://doi.org/10.1016/j.ijhydene.2023.11.110.

Volume 25, Issue 10, 2025 PAGE NO: 93





